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ABSTRACT 

A generalization of the Cucker–Smale model for collective animal behavior is investigated. 

The model is formulated as a system of delayed stochastic differential equations. It incorporates 

two additional processes which are present in animal decision making, but are often neglected 

in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses 

of individuals to signals in their environment. Sufficient conditions for flocking for the 

generalized Cucker–Smale model are derived by using a suitable Lyapunov functional. As a 

by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian 

motion is obtained. In the second part of the paper, results of systematic numerical simulations 

are presented. They not only illustrate the analytical results, but hint at a somehow surprising 

behavior of the system—namely, that the introduction of an intermediate time delay may 

facilitate flocking. Key words. Cucker–Smale system, flocking, asymptotic behavior, noise, 

delay, geometric Brownian motion. 
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1. INTRODUCTION 

Collective coordinated motion of 

autonomous self-propelled agents with self-

organization into robust patterns appears in 

many applications ranging from animal 

herding to the emergence of common 

languages in primitive societies [31]. Apart 

from their biological and evolutionary 

relevance, collective phenomena play a 

prominent role in many other scientific 

disciplines, such as robotics, control theory, 

economics, and the social sciences [4, 10, 

35, 26]. In this paper we study the interplay 

of noise and delay on collective behavior. 

We investigate a modification of the well-

known Cucker–Smale model [5, 6] with 

multiplicative noise and reaction delays. 

 

 

We consider N ∈ N autonomous agents 

located in a one-dimensional physical 

space. The agents are described by their 

phase-space coordinates (xi(t), vi(t)) ∈ R2, 

i = 1, 2,...,N, where xi ≡ xi(t) ∈ R and vi ≡ 

vi(t) ∈ R are the time-dependent position 

and velocity, respectively, of the ith agent. 

The (fixed) reaction delay will be denoted 

by τ ≥ 0, and we adopt the following 

notational convention. Convention 1. 

Throughout the paper, we denote by xi the 

position xi evaluated at time t, i.e., xi = 

xi(t), and by xi the same quantity evaluated 

at time t − τ, i.e., xi = xi(t − τ). The same 

holds for the velocities vi = vi(t) and vi = 
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vi(t − τ). We will also write x = (x1, 

x2,...,xN ) ∈ RN (resp., v = (v1, v2,...,vN ) 

∈ RN ) for the vectors of locations (resp., 

velocities) of the agents. The system of 

equations that we will study is the following 

system of delayed Itˆo stochastic 

differential equations: 

 

for i = 1, 2,...,N. The parameters λ > 0 and 

σi ∈ R, i = 1, 2,...,N, measure the coupling 

and noise strength, respectively, and dBt i , 

i = 1, 2,...,N, are independent white noise 

scalars. The function ψ : [0, ∞) → [0, ∞) 

models the communication rate between 

agents and is assumed to depend on their 

mutual distance. We note that the scaling by 

N −1 in (1.2) is significant for obtaining a 

Vlasov-type kinetic equation in the mean-

field limit N → ∞; see, for example, [14]. 

Our aim is to investigate (1.1)–(1.2) for 

general values of reaction delay τ and noise 

strength parameters σi, i = 1, 2,...,N. 

The standard Cucker–Smale model [5, 6] is 

a special case of (1.1)–(1.2) with σi = 0 and 

τ = 0. It was introduced and studied in the 

seminal papers [5, 6], originally as a model 

for language evolution. Later the 

interpretation as a model for flocking in 

animals (birds) prevailed. In general, the 

term flocking refers to the phenomena 

where autonomous agents reach a 

consensus based on limited environmental 

information and simple rules. The 

communication rate ψ introduced in [5, 6] 

and most of the subsequent papers is of the 

form 

 

The Cucker–Smale model is a simple 

relaxation-type model that reveals a phase 

transition depending on the intensity of 

communication between agents. If β < 1/2, 

then the model exhibits so-called 

unconditional flocking, where for every 

initial configuration the velocities vi(t) 

converge to a common consensus value. On 

the other hand, with β ≥ 1/2 the flocking is 

conditional; i.e., the asymptotic behavior of 

the system depends on the value of λ and on 

the initial configuration. This result was 

first proved in [5, 6] using tools from graph 

theory (spectral properties of graph 

Laplacian), and slightly later reproved in 

[14] by means of elementary calculus. 

Another proof was provided in [13], based 

on a bound by a system of dissipative 

differential inequalities, and, finally, the 

proof in [3] is based on bounding the 

maximal velocity. 

Various modifications of the classical 

Cucker–Smale model have been 

considered. For instance, the case of 

singular communication rates ψ(s)=1/sβ 

was studied in [13, 27]. Motsch and Tadmor 

[24] scaled the communication rate 

between the agents in terms of their relative 

distance, so that their model does not 

involve any explicit dependence on the 

number of agents. The dependence of the 

communication rate on the topological 

rather than metric distance between agents 

was introduced in [15]. The influence of 

additive noise in individual velocity 

measurements was studied in [12] and [34]. 

More complicated noise terms can be 

derived by considering details of 

interactions of agents with their 

environment [8, 9]. Stochastic flocking 

dynamics with multiplicative white noises 

was considered in [1]. Delays in 

information processing were considered in 

[21]; however, their analysis applies only to 

the Motsch–Tadmor variant of the model. 

Synchronization and coordination systems 

with noise and delays were studied also in 

[16, 17, 18, 28, 29]. 
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In this paper, we are interested in studying 

the combined influence of multiplicative 

noise and reaction delays on the asymptotic 

behavior of the generalized Cucker– Smale 

system (1.1)–(1.2). In particular, we derive 

a sufficient condition in terms of noise 

intensities σi and delay length τ that 

guarantees flocking. Our analysis is based 

on the construction of a Lyapunov 

functional and an estimate of its decay rate. 

To prove our main results, we make an 

additional structural assumption about the 

matrix of communication rates which, 

loosely speaking, means that the 

communication between agents is strong 

enough. 

The paper is organized as follows: In 

section 2 we adopt certain simplifying 

assumptions for the model (1.1)–(1.2) that 

will facilitate its analysis, and define what 

is meant by flocking in the context of this 

model. Moreover, we point out that the 

model includes delayed geometric 

Brownian motion as a special case, which 

provides an insight into which qualitative 

properties may be expected from its 

solutions. In section 3 we derive a sufficient 

condition for flocking in terms of the 

parameters λ, σi, and τ, based on a micro-

macro decomposition and construction of a 

Lyapunov functional. Moreover, as a by-

product of our analysis, we provide a new 

result about the asymptotic behavior of 

delayed geometric Brownian motion. 

Section 4 is devoted to a systematic 

numerical study of the model. First, we 

focus on simulation of delayed geometric 

Brownian motion; in particular, we study 

the dependence of its asymptotic behavior 

on the delay and noise levels. Then, we 

perform the same study for system (1.1)–

(1.2). This leads to the interesting 

observation that, for weak coupling and 

small noise levels, the introduction of 

intermediate delays may facilitate flocking. 

A systematic study of this effect concludes 

the paper. 

2. MODEL SIMPLIFICATIONS.  

In the generic setting, the communication 

rates ψ(|xi − xj |) in (1.2) are functions of 

the mutual distances between the agents. 

However, the analysis in section 3 is based 

on a certain structural assumption about the 

communication matrix ψij = ψ(|xi − xj |), 

and the particular form of the dependence 

on the mutual distances is irrelevant. This 

structural assumption is not needed in 

section 4, where we present a systematic 

numerical study of the general model (1.1)– 

(1.2). 

We consider the rates ψij = ψij (t) as given 

adapted stochastic processes, so that (1.2) 

decouples from (1.1). Moreover, we assume 

that ψij are uniformly bounded, 

 

Thus, we finally arrive at the stochastic 

system of delayed differential equations 

that we will study analytically in section 3, 

 

for i = 1, 2,...,N, with the agreed notation 

ψij = ψij (t − τ). The system is supplemented 

with the deterministic constant initial datum 

v0 ∈ RN , 

 

Let us note that we interpret the noise term 

in (2.2) in terms of the Itˆo calculus [25, 22]. 

Theorem 2.1. The stochastic delay 

differential system (2.2) with initial 

condition (2.3) admits a unique global 

solution v = v(t) on [−τ, ∞), which is an 

adapted process with E   T −τ |v(t)| 2 dt  < 

∞ for all T < ∞, i.e., a martingale. Proof. The 

proof follows directly from Theorem 3.1 of 
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[22] and the subsequent remark on p. 157 

there. Indeed, (2.2) is of the form 

 

for suitable functions F and G. In particular, 

the right-hand side is independent of the 

present state v(t), so that the solution can be 

constructed by the method of steps. The 

second order moment is bounded on (−τ,T ) 

because of the linear growth of the right-

hand side of (2.2) in v. 

We now define the property of asymptotic 

flocking for the solutions of (2.2)–(2.3). 

Definition 2.2. We say that system (2.2) 

exhibits asymptotic flocking if the solution 

(v(t))t≥0 for any initial condition (2.3) 

satisfies 

 

where E[·] denotes the expected value of a 

stochastic process 

2.1. Simplified case with ψ ≡ 1. To get an 

intuition of what qualitative properties we 

may expect from the solutions of (2.2), we 

consider the case when the communication 

rate is constant, i.e., ψij ≡ 1. We also assume 

that σi is equal to the same constant σ ∈ R 

for all i = 1, 2,...,N, i.e., σi ≡ σ, and, 

moreover, that v0 i = v0 for some v0 ∈ R 

and all i = 1, 2,...,N. Then, defining Vc(t) := 

1 N N i=1 vi(t), we obtain 

 

for suitable functions F and G. In particular, 

the right-hand side is independent of the 

present state v(t), so that the solution can be 

constructed by the method of steps. The 

second order moment is bounded on (−τ,T ) 

because of the linear growth of the right-

hand side of (2.2) in v. 

We now define the property of asymptotic 

flocking for the solutions of (2.2)–(2.3). 

Definition 2.2. We say that system (2.2) 

exhibits asymptotic flocking if the solution 

(v(t))t≥0 for any initial condition (2.3) 

satisfies 

 

where E[·] denotes the expected value of a 

stochastic process. 

2.1. Simplified case with ψ ≡ 1. To get an 

intuition of what qualitative properties we 

may expect from the solutions of (2.2), we 

consider the case when the communication 

rate is constant, i.e., ψij ≡ 1. We also assume 

that σi is equal to the same constant σ ∈ R 

for all i = 1, 2,...,N, i.e., σi ≡ σ, and, 

moreover, that v0 i = v0 for some v0 ∈ R 

and all i = 1, 2,...,N. Then, defining Vc(t) := 

1 N N i=1 vi(t), we obtain 

 

Since, by assumption, Vc(t)−vi(t) ≡ 0 for t 

∈ (−τ, 0], we have Vc(t) ≡ v0 for all t ≥ 0. 

Consequently, (2.2) decouples into N 

copies of the delayed SDE 

 

where we denote w := vi − v0 for any i = 1, 

2,...,N. We are not aware of any results 

concerning the asymptotic behavior of 

(2.4). The method developed in [2] suggests 

that 

 

where rλ is the fundamental solution of the 

delayed ODE 

 

i.e., formally, rλ solves (2.5) subject to the 

initial condition w(t) = χ{0}(t) for t ∈ (−τ, 
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0]. The fundamental solution rλ can be 

constructed by the method of steps [30]; 

however, evaluation of its L2(0, ∞)-norm is 

an open problem. From this point of view, 

the analysis carried out in section 3 

provides new and valuable information 

about the asymptotics of (2.4); see section 

3.4. Let us note that setting τ = 0 in the 

above criterion recovers the well-known 

result about geometric Brownian motion 

[25]: the mean-squared fluctuation E[|w(t)| 

2] tends to zero if and only if σ2 < 2λ. 

Finally, for the convenience of the reader, 

we give an overview of the qualitative 

behavior of solutions to (2.5) with λ > 0, 

subject to a constant nonzero initial datum 

(see, e.g., Chapter 2 of [30]), as follows:  

• If λτ ≤ 1/e, the solution monotonically 

converges to zero as t → ∞; hence no 

oscillations occur.  

• If 1/e < λτ < π/2, oscillations appear, 

however, with asymptotically vanishing 

amplitude.  

• If λτ = π/2, periodic solutions exist.  

• If λτ > π/2, the amplitude of the 

oscillations diverges as t → ∞. 

Hence, we conclude that the 

(over)simplified model (2.5), 

corresponding to the delayed Cucker–

Smale system with ψ ≡ 1 and no noise, 

exhibits flocking if and only if λτ < π/2. In 

the next section we derive a sufficient 

condition for flocking for the model (2.2) 

with given communication rates ψij 

satisfying (2.1). 

3. SUFFICIENT CONDITION FOR 

FLOCKING.  

In this section we derive a sufficient 

condition for flocking in (2.2) according to 

Definition 2.2. Our analysis will be based 

on a construction of a Lyapunov functional 

that will imply decay of velocity 

fluctuations for suitable parameter values. 

However, we will have to adopt an 

additional structural assumption on the 

matrix of communication rates (ψij )N 

i,j=1. 

Before we proceed, let us briefly point out 

the mathematical difficulties that arise due 

to the introduction of delay and noise into 

the Cucker–Smale system. The 

“traditional” proofs of flocking, for 

instance [5, 6, 14, 13], rely on the monotone 

decay of the kinetic energy (velocity 

fluctuations) of the form 

 

However, this approach fails if processing 

delays are introduced, since for (1.2) 

without noise (i.e., all σi = 0) we have 

 

One then expects the product (vi − vj ) · (vi 

− vj ) to be nonnegative for τ > 0 small 

enough; however, it is not clear how to 

prove this hypothesis. 

The introduction of noise leads to 

additional difficulties—in particular, the 

classical bootstrapping argument [5, 6, 13] 

for fluctuations in velocity fails in this case. 

Much as in [12], we circumvent this 

problem by adopting, in addition to the 

boundedness (2.1), a structural assumption 

about the matrix of communication rates. 

We define the Laplacian matrix A(t) ∈ 

RN×N by 

 

and note that A is symmetric, diagonally 

dominant with nonnegative diagonal 

entries; thus it is positive semidefinite and 
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has real nonnegative eigenvalues. Due to its 

Laplacian structure, its smallest eigenvalue 

is zero [5]. Let us denote its second smallest 

eigenvalue (the Fiedler number) by μ2(t). 

Our structural assumption is that there 

exists an > 0 such that 

 

This can be guaranteed, for instance, by 

assuming that the communication rates are 

uniformly bounded away from zero, ψij (t) 

≥ ¯ ψ > 0, since there exists a constant c > 

0 such that μ2(t) ≥ c ¯ ψ; see Proposition 2 

in [5]. 

Moreover, we assume that the matrix of 

communication rates is uniformly Lipschitz 

continuous in the Frobenius norm; in 

particular, there exists a constant L > 0 such 

that 

 

with the notation A := A(t), A := A(t − τ) and 

where · F denotes the Frobenius matrix 

norm. Then, with the definition (3.1), we 

put (2.2) into the form 

 

Our main result is the following. 

Theorem 3.1. Let A be given by (3.1) 

satisfying (2.1), (3.2), and (3.3). Let the 

parameters λ > 0 and σ2 max := max{σ2 1, 

σ2 2,...,σ2 N } satisfy 

 

Then there exists a critical delay τc = τc(λ, 

σmax, L, ) > 0, independent of N, such that 

for every 0 ≤ τ 

Moreover, if the matrix of communication 

rates A is constant, i.e., (3.3) holds with L = 

0, then τc is of the form 

 

Remark 1. The system (3.4) with constant 

communication matrix A can be seen as a 

linearization of the system (1.1)–(1.2) about 

the equilibrium vi ≡ v0 for i = 1, 2,...,N with 

some v0 ∈ R. Note that in this case the 

formula (3.6) for the critical delay τc does 

not depend on the particular value of in 

(3.2). 

3.1. Micro-macro decomposition.  

We introduce a micro-macro 

decomposition [14, 12] which splits (3.4) 

into two parts: macroscopic, which 

describes the coarse-scale dynamics, and 

microscopic, which describes the fine-scale 

dynamics. The macroscopic part for the 

solution is set to be the mean velocity Vc(t), 

 

The microscopic variables are then taken as 

the fluctuations around their mean values, 

 

We denote w(t)=(w1, w2,...,wN ) ∈ RN . 

Then we have 

 

Since e is the eigenvector of A 

corresponding to the zero eigenvalue, we 

have Aw = Av. Then (3.4) can be rewritten 

as follows: 

 

The macroscopic variable Vc satisfies the 

following lemma. 

Lemma 3.2. Let (v(t))t≥0 be a solution of 

(2.2) subject to the deterministic constant 

initial datum (2.3). Then E[Vc(t)] ≡ Vc(0) 

for t ≥ 0 and E  T −τ |Vc(t)| 2 dt  < ∞ for all 

T < ∞. 
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Proof. The boundedness of E  T −τ |Vc(t)| 2 

dt  follows directly from the definition (3.7) 

and the martingale property of v(t) provided 

by Theorem 2.1. Using (3.1), we have 

 

Summing equations (3.4), i = 1, 2,...,N, 

using (3.7) and Aw = Av, we obtain that the 

macroscopic dynamics is governed by the 

system 

 

After integration in time this implies 

 

Since f(s) := (A(s − τ)w(s − τ))i is a 

martingale, we have E   t 0 f(s) dBs i  = 0 

(see [22, Theorem 5.8, p. 22]). Thus we 

obtain E[Vc(t)] ≡ Vc(0). 

Remark 2. Note that (3.10) and (3.11) are 

expressed in terms of the w-variables only, 

and so they form a closed system, which is 

equivalent to (3.4). 

Clearly, due to (3.8), we have w · e = N i=1 

wi ≡ 0. Consequently, it is natural to 

introduce the decomposition RN = e 

⊕ e 

⊥, where e is given by (3.9). We then have 

w(t) ∈ e 

⊥ for all t ≥ 0. 

Lemma 3.3. Let A ∈ RN×N , N ≥ 2, be the 

matrix defined in (3.1), and assume that 

(2.1) and (3.2) hold. Then we have the 

following:  

(a) The maximal eigenvalue of A is 

bounded by 2 (N − 1).  

(b) We have |Au| 2 ≤ 2 (N − 1) uT Au for 

any vector u ∈ RN .  

(c) We have |w| 2 ≤ wT Aw ≤ 2 (N − 1)|w| 2 

for any vector w ∈ e 

⊥.  

(d) For any vectors u, w ∈ e 

⊥ and δ > 0 we have 

 

Proof. (a) The claim follows from the 

Gershgorin circle theorem. Indeed, since 0 

< ψij ≤ 1, the diagonal entries satisfy 0 ≤ Aii 

≤ N − 1, and j=i |Aij | = Aii for all i = 1, 

2,...,N. 

(b) The smallest eigenvalue of A is zero 

with the corresponding eigenvector e. The 

second smallest eigenvalue μ2 (the Fiedler 

number) is assumed to be positive by (3.2). 

Thus, A is a symmetric positive operator on 

the space e 

⊥, and there exists an orthonormal basis of 

e 

⊥ composed of eigenvectors ξ2, ξ3,..., ξN 

of A corresponding to the positive 

eigenvalues μ2, μ3,...,μN . Then, every 

vector u ∈ RN can be decomposed as 

 

hus, due to the above bound on the 

eigenvalues 0 ≤ μi ≤ 2(N − 1), we have 

 

Since nonzero eigenvalues are bounded 

from below by (using (3.2)) and from above 

by part (a) of this lemma, we obtain 

 

(d) With the orthonormality of the basis ξ2, 

ξ3,..., ξN and the positivity of the 

eigenvalues μ2, μ3,...,μN , we have by the 

Cauchy–Schwarz inequality 
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and with any δ > 0, 

 

3.2. Lyapunov functional. The proof of 

Theorem 3.1 relies on estimating the decay 

rate of the following Lyapunov functional 

for (3.10)–(3.11): 

 

where p, q are positive constants depending 

on λ, τ, and σi. 

Lemma 3.4. Let the assumptions of 

Theorem 3.1 be satisfied. Then there exist 

positive constants p, q, and ε such that for 

every solution (w(t))t≥0 of (3.10)–(3.11) 

the Lyapunov functional (3.13) satisfies 

 

Proof. We apply the Itˆo formula to 

calculate dwi(t)2. Note that the Itˆo formula 

holds in its usual form also for systems of 

delayed SDE; see [11, p. 32] and [20, 7, 23]. 

Therefore, we obtain 

 

With the identity dBt j dBt k = δjk dt 

(formula (6.11) on p. 36 of [22]), we have 

 

Consequently, summing over i, using w · e 

and the identity 

 

we obtain 

 

Consequently, we have 

 

Our goal is to estimate d dtE[L (t)] from 

above. First, we note that by the elementary 

property of the Itˆo integral [22, Theorem 

5.8, p. 22] 

 

For the first term of the right-hand side in 

(3.15), we write 

 

and apply Lemma 3.3(d) with δ > 0, 

 

Using Lemma 3.3(c), we have 

 

Now we write for w − w , componentwise, 

using (3.10), 

 

Thus, we have for the expectation of the 

square 
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An application of the Cauchy–Schwarz 

inequality and Fubini’s theorem for the first 

term of the right-hand side yields 

 

For the second term we use the fundamental 

property of the Itˆo integral [22, Theorem 

5.8, p. 22], 

 

Similarly, the third term is estimated as 

 

Thus, we get from (3.16), estimating N−1 N 

≤ 1, 

 

An application of Lemma 3.3(b) gives 

 

To balance this term with −2λ N wT Aw, we 

use assumption (3.3) and Lemma 3.3(c) in 

 

Collecting all the terms in (3.15) finally 

leads to 

 

We set 

 

then the above expression simplifies to 

 

We want −2 λ + λ δ−1 + 2 q  L −1τ + 1< 0. 

Substituting (3.17) into this inequality leads 

to a third order polynomial inequality in τ. 

This polynomial has all positive 

coefficients but the zero order one, which is 

c0 := 2σ2 max + δ−1λ − 2λ. If (3.5) is 

satisfied, then choosing δ > 0 such that 

 

makes c0 negative. Consequently, there 

exists a τc > 0 such that for any 0 ≤ τ<τc, 

 

and we have to find τ such that −2 λ + λ δ−1 

+ 2 q < 0. Again, substituting (3.17) for p 

and q leads to 

 

The maximum value of the right-hand side 

is obtained for δ = λ(λ − σ2 max)−1, which 

is positive because of the first inequality in 

(3.6). Substituting δ = λ(λ − σ2 max)−1 into 

(3.19), we obtain 

 

If the above sharp inequality is satisfied, 

there exists an ε > 0 such that −ε = −2 λ + λ 

δ−1 + 2 q and, consequently, (3.14) holds. 

4. NUMERICAL EXPERIMENTS.  

We provide results of numerical 

experiments for the models considered in 

this paper with focus on their asymptotic 

behavior. First, we illustrate that one has to 

be cautious when interpreting the numerical 

results as indications about the “true” 

asymptotic behavior of the solution, 
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because implementations of Monte Carlo 

algorithms for geometric Brownian motion 

lead to systematic underestimation of the 

moments of the true solution; see section 

4.1. Keeping this systematic defect in mind, 

we will resort to weak methods for 

simulation of our SDEs and study their 

numerical asymptotic behavior. In section 

4.2, we resort to the delayed geometric 

Brownian motion (2.4), which can be seen 

as a toy model of (1.1)–(1.2), and find 

combinations of parameter values that 

guarantee numerical asymptotic decay of 

the solution. In section 4.3, we then perform 

numerical simulations of the velocity 

alignment system (2.2) with fixed 

communication rates, and, finally, in 

section 4.4, we focus on the full system 

(1.1)–(1.2). 

4.1. Analysis of the Monte Carlo method 

for geometric Brownian motion. In this 

section we estimate the systematic error 

produced by numerical implementations of 

the Monte Carlo algorithm for geometric 

Brownian motion without delay. We show 

that computer simulations underestimate 

the mean-squared fluctuations of the 

process due to the fact that the numerical 

implementation does not capture large 

deviations (extreme outliers), and the error 

grows exponentially in time. Let us 

consider the one-dimensional Brownian 

motion with drift, 

 

Then, defining v(t) := exp[z(t)], we have by 

the Itˆo formula 

 

For simplicity, we perform a model 

calculation with 2 λ = σ2 > 0, so that 

 

Then, the density u(t, x) of the process z is 

given by 

 

Moreover, we have 

 

We assume that our numerical scheme 

produces approximations ¯z of the process 

z that exclude the extreme outliers; i.e., 

Prob(|z¯(t)| > α(t)) = 0 for some α = α(t). In 

particular, we consider a properly scaled 

cut-off of the density u(t, x) such that the 

probability of the extreme outliers 

Prob(|z(t)| > α(t)) remains constant in time. 

This leads to α(t) = η √ 4 λ t for some η > 0, 

since 

 

where erfc(η) = √ 2 π ∞ η exp

 −x2  dx is the complementary error 

function. Consequently, we turn u(t, x) into 

the truncated probability density 

 

 

Fig. 1. (a) Logarithm of the simulated 

mean-squared fluctuations log(E[¯v2(t)]) 

(solid line) and the analytical result 

log(E[v2(t)]) = 4 λ t (dashed line). (b) 

Logarithm of the ratio of simulated and 

analytically calculated mean-squared 

fluctuations E[¯v2(t)]/E[v2(t)] (solid line) 

and the theoretically calculated curve 

(dashed line) given by the right-hand side 

of (4.4). The Monte Carlo simulation for 
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z(t) was performed with 106 paths of the 

process (4.1) with z(0) = 0, λ = 0.5, and σ = 

1 on the time interval [0, 30] divided into 

103 equidistant sampling points. 

where χ[−α(t),α(t)] is the characteristic 

function of interval [−α(t), α(t)] and erf(η) 

= 1 − erfc(η) is the error function. Let us 

denote by ¯z(t) the process with the density 

u¯η(t, x) for a fixed η > 0, and ¯v(t) := 

exp(¯z(t)). A simple calculation then 

reveals that 

 

Consequently, since E[v2(t)] = exp(4 λ t), 

the numerical method produces the relative 

error 

 

This ratio is equal to one for t = 0. Using the 

mean value theorem, we obtain the 

asymptotic behavior of the ratio for large 

times, 

 

Consequently, any implementation of the 

Monte Carlo method excluding large 

deviations will underestimate the true value 

of E[v2(t)] by an exponentially growing 

factor in time. Let us note that this is also 

true for any moment of v and with general 

parameters λ and σ. We illustrate this fact 

using a numerical simulation. We perform a 

Monte Carlo simulation in Matlab with 106 

paths of the process (4.1) on the time 

interval [0, T ] with T = 30 and 103 

equidistant sampling points. We impose the 

initial condition z(0) = 0 and the parameter 

values λ = 0.5 and σ = 1. Consequently, z(t) 

is the Wiener process Bt , and for its 

numerical approximation ¯z we use the 

built-in Matlab procedure normrnd that 

generates normally distributed random 

numbers. We calculate ¯v(t) := exp(¯z(t)) 

and evaluate the mean-squared fluctuations 

E[¯v2(t)]. We plot its logarithm as the solid 

curve in Figure 1(a), compared to the 

analytical curve log(E[v2(t)]) = 4 λ t 

(dashed line). We observe the exponential-

in-time divergence of the two curves. This 

is well described by our formula (4.4), as 

illustrated 

in Figure 1(b). For the calculation of the 

cut-off parameter η we use the maximal 

value attained by the actual numerical 

realization of the stochastic process; i.e., we 

set η := maxt∈(0,T] |z¯(t)| √4 λ t . We then 

plot the logarithm of the ratio 

E[¯v2(t)]/E[v2(t)] and the theoretically 

calculated curve given by the right-hand 

side of (4.4). We observe a good match 

between the two curves. This systematic 

discrepancy between the analytical 

formulas and Monte Carlo simulations 

originates in the heavy tailed distribution of 

the geometric Brownian motion and is a 

well-studied topic; see, e.g., the survey 

[19]. Importance sampling and rare-event 

simulation techniques would be the 

methods of choice to overcome this 

problem; however, their implementation is 

beyond the scope of our paper. 

4.2. Numerical study of delayed 

geometric Brownian motion. Using λ = 1, 

the delayed SDE (2.4) can be equivalently 

written as 

 

where σ ≥ 0 and τ ≥ 0 are nonnegative 

parameters. We perform a systematic 

numerical study of the delayed SDE (4.5) to 

characterize the asymptotic behavior of its 

solutions in dependence on the values of the 

parameters σ and τ. In particular, we divide 

the domain [0, 2] × [0, 2] for (σ, τ) into 100 

× 100 equidistant (σ, τ)-pairs. For each pair 

of the parameter values we perform a 

Monte Carlo simulation for (4.5) with Q = 
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100 paths over the time interval [0, T ] with 

T = 30 and timestep Δt = 10−3. We impose 

the constant deterministic initial condition 

w(t) ≡ 1 for t ∈ (−τ, 0]. For discretization of 

(4.5) we use the Euler–Maruyama method; 

i.e., the discrete scheme is 

 

subject to the initial condition wt ≡ 1 for t ≤ 

0. Here K = T /Δt denotes the total number 

of timesteps, tk = kΔt, and N0,1 a normally 

distributed random variable with zero mean 

and unit variance. Note that the values of τ 

are chosen to be integer multiples of Δt, so 

that tk − τ = tl for some l ∈ Z. For each (σ, 

τ)-pair and each path q of the Monte Carlo 

simulation we calculate the “indicator,” 

 

where wq t is the qth path in the Monte 

Carlo simulation of (4.6). The shading in 

Figure 2 encodes the logarithm of Iσ,τ . To 

define a region of “numerical 

convergence,” we choose a threshold Θ 

such that I0,τc = Θ for the delay τc = π 2 

that is critical for the problem without noise 

(σ = 0). In our case this led to Θ  10−2. The 

region of “numerical convergence” is 

marked dark blue in Figure 2. We observe 

the decrease of the critical value of the 

delay with increasing level of noise. For 

comparison, the critical values of τ given by 

(3.20) as a function of σ are indicated by the 

solid line. 

4.3. Numerical study of system (2.2) with 

fixed communication matrix.  

We present results of numerical simulations 

of system (2.2) in the one-dimensional 

setting d = 1, where we fix the 

communication rates to ψij ≡ 1 for all i, j = 

1, 2,...,N; i.e., every agent communicates 

with all others at the same rate. 

Consequently, the communication matrix A 

has the off-diagonal entries Aij = −1, i = j, 

and Aii = N −1. It has only two eigenvalues, 

0 and N. Consequently, its Fiedler number 

is μ2 = N, 

 

Fig. 2. Results of Monte Carlo simulations 

of the delayed SDE (4.5) with Q = 100 

paths for (σ, τ) ∈ [0, 2] × [0, 2]. The shading 

encodes log(Iσ,τ ). The region of 

“numerical convergence” is dark blue. The 

solid line indicates the critical values of τ 

given by formula (3.20) with λ = 1 as a 

function of σ. 

and we can choose := N in (3.2). In this 

setting, we can directly compare our 

analytical result, Theorem 3.1, with 

numerical simulations. We will be 

considering even numbers of agents N = 

2K, particularly, N ∈ {2, 20}, and we 

prescribe the initial datum 

 

 

for t ∈ (−τ, 0]. Although the asymptotic 

behavior of the solutions in general depends 

on the particular choice of the initial datum, 

a systematic study of this dependence is 

beyond the scope of this paper. Therefore 

we consider only the “generic” choice of 

initial conditions (4.7). 

We perform Monte Carlo simulations of the 

system (2.2) with N ∈ {2, 20}, σi = σ for all 

i = 1, 2,...,N, and λ = 1 (other values of λ 
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can be achieved by rescaling of σ and time). 

We divide the domain [0, 2]×[0, 2] for (σ, 

τ) into 50×50 equidistant (σ, τ)- pairs. For 

each pair of the parameter values we 

perform a Monte Carlo simulation with Q = 

100 paths over the time interval [0, T ] with 

T = 30. We use the Euler– Maruyama 

method for discretization of (2.2) with 

timestep Δt = 10−3. To classify the 

asymptotic behavior of the solution, we 

again define the “indicator” 

 

where vq tk is the qth path in the Monte 

Carlo simulation of (1.1)–(1.2) at time tk = 

kΔt. We say that numerical flocking takes 

place when Iσ,τ < 10−2. The shading in 

Figure 3 encodes the decadic logarithm of 

the indicator, and the dark blue region 

indicates numerical flocking. We observe 

that the region of numerical flocking is only 

weakly influenced by the number of agents 

N. This is in agreement with the fact that the 

flocking condition (3.6) in Theorem 3.1 

does not depend on N. The increased 

smoothness of the color transition when N 

= 20 is a consequence of the law of large 

 

Fig. 3. Decadic logarithm of the indicator 

Iσ,τ , given by (4.8), for Monte Carlo 

simulations of the system (2.2) with Q = 

100 paths on the time interval [0, 30] 

subject to the initial condition (4.7), with λ 

= 1, (σ, τ) ∈ [0, 2] × [0, 2]. The dark blue 

regions (color online) indicate “numerical 

flocking.” The solid line indicates the 

critical value τc given by (3.6) for λ = 1 as 

a function of σ. The number of individuals 

is (a) N = 2 and (b) N = 20. 

numbers. For comparison, the critical value 

τc given by (3.6) for λ = 1 as a function of 

σ is indicated by the solid line in both 

panels. The comparison with the numerical 

results suggests that the condition (3.6) is 

far from optimal. 

4.4. Numerical study of the delayed 

Cucker–Smale system with 

multiplicative noise. Finally, we present 

results of numerical simulations of system 

(1.1)–(1.2) with communication rates ψ(|xi 

− xj |) and ψ given by (1.3). As in section 

4.3, our goal is to characterize the 

asymptotic behavior of the solutions in 

dependence on the parameter values; 

however, we are facing additional 

difficulties here. In particular, the 

asymptotic behavior of the solution may 

depend nontrivially on the initial condition, 

as we show in Figure 4. Since a systematic 

study taking this effect into account is 

beyond the scope of this paper, we will 

impose the same type of initial condition for 

all our simulations. In particular, we 

prescribe constant zero value for the x-

variables, 

 

For the v-variables we impose again the 

initial datum (4.7). We perform Monte 

Carlo simulations of the system (1.1)–(1.2), 

(1.3) with N ∈ {2, 20} and β = 0.1 (strong 

coupling) or β = 1 (weak coupling). As in 

section 4.3, we fix λ = 1 and divide the 

domain [0, 2] × [0, 2] for (σ, τ) into 50 × 50 

equidistant (σ, τ)- pairs. For each pair of the 

parameter values we perform a Monte 

Carlo simulation with Q = 100 paths over 

the time interval [0, T ] with T = 30. We use 

the Euler– Maruyama method for 

discretization of (1.1)–(1.2) with timestep 

Δt = 10−3. To classify the asymptotic 
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behavior of the solution, we again use the 

indicator (4.8) and say that numerical 

flocking takes place when Iσ,τ < 10−2. The 

background color in Figure 5 encodes the 

decadic logarithm of the indicator, and the 

dark blue region indicates numerical 

flocking. 

In panel (a) we indicate by an arrow the 

point (σ, τ) = (0, 1.75) that corresponds to 

the parameter setting in Figure 4; however, 

note that the initial conditions for xi in 

Figure 4 differ from (4.9). We see that the 

indicated point lies close to the 

 

Fig. 4. Numerical simulations of the system 

(1.1)–(1.2), (1.3) with parameter values N = 

2, λ = 1, β = 0.1, σ = 0, and τ = 1.75. Both 

simulations are performed on the time 

interval [0, 120] with discrete timestep Δt = 

10−3. The initial condition for v is v1(t) ≡ 

1, v2(t) ≡ −1 for t ∈ (−τ, 0] in both cases. 

The initial condition for x is (a) x1(t) ≡ −1, 

x2(t) ≡ 1; (b) x1(t) ≡ 1, x2(t) ≡ −1. The plots 

show the velocities of the two agents (red 

and blue, color online) as functions of time. 

boundary of the dark blue region, i.e., in the 

“transition zone” between numerical 

flocking and nonflocking. We hypothesize 

that this is why we were able to observe the 

two qualitatively different kinds of 

asymptotic behavior in Figure 4 even if the 

initial datum for the v-variables is the same 

in both cases. Again, a systematic study of 

this hypothesis is beyond the scope of this 

paper 

In Figure 5 we observe that the region of 

numerical flocking is only weakly 

influenced by the number of agents N. This 

is in agreement with the fact that the 

flocking condition (3.6) in Theorem 3.1 

does not depend on N. The increased 

smoothness of the color transition when N 

= 20 is a consequence of the law of large 

numbers. On the other hand, we can 

distinguish two distinct types of patterns, 

one similar to Figure 2 for the strong 

coupling case β = 0.1 (Figures 5(a) and 

5(b)), and a semicircular pattern for the 

weak coupling case β = 1 (Figures 5(c) and 

5(d)). In particular, the result for the weak 

coupling case is somewhat surprising—it 

suggests that for low levels of noise (σ 0.6), 

introduction of intermediate delays (0.3 τ 

1.8) may facilitate flocking. This is further 

supported by Figure 6 where we plot 

sample solutions of (1.1)–(1.2), (1.3) for N 

= 2, β = 1, σ = 0 (Figure 6(a)), σ = 0.5 

(Figure 6(b)) and three different values of 

the delay τ ∈ {0, 1, 2}. We observe that 

while for τ = 0 and τ = 2 the agents do not 

show the tendency to converge to a 

common velocity during the indicated time 

interval, they exhibit numerical flocking for 

the intermediate value τ = 1. We will call 

this observation time-delay–induced 

flocking. 

Let us note that the results presented in 

Figure 6 do not contradict our analytical 

results. In particular, condition (3.6) gives τ 

< √2/4 . = 0.35 if σ = 0 and τ < (−1/2 

+ -11/8)/4 . = 0.17 if σ = 0.5, so it is only 

satisfied for the simulations in the panels 

corresponding to τ = 0 in Figure 6. 

Therefore, the statement of Lemma 3.4 

applies. The (expectation of) the Lyapunov 

function (3.13) decreases in time for these 

two simulations. 

To gain a further understanding of the 

interesting phenomenon of time-delay– 

induced flocking, we run systematic 
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simulations of the system (1.1)–(1.2), (1.3) 

with 

 

Fig. 5. Decadic logarithm of the indicator 

Iσ,τ , given by (4.8), for Monte Carlo 

simulations of the system (1.1)–(1.2), (1.3) 

with Q = 100 paths on the time interval [0, 

30] subject to the initial conditions (4.7) 

and (4.9), with λ = 1 and (σ, τ) ∈ [0, 2] ×[0, 

2]. The dark blue regions (color online) 

indicate numerical flocking. The arrow in 

(a) indicates the point (σ, τ) = (0, 1.75) that 

corresponds to the parameter setting in 

Figure 4. We use (a) β = 0.1, N = 2; (b) β = 

0.1, N = 20; (c) β = 1, N = 2; and (d) β = 1, 

N = 20. 

different values of β ∈ [0.5, 2.5], τ ∈ [0, 2], 

and σ ∈ {0, 0.5}. We calculate the indicator 

Iβ,τ as in (4.8) with Q = 1 for σ = 0 (there is 

no need to run more than one path for the 

case without noise) and Q = 100 Monte 

Carlo paths for σ = 0.5. The decadic 

logarithm of Iβ,τ is plotted in Figure 7, and 

we again use the threshold Iβ,τ < 10−2 to 

define numerical flocking (dark blue 

regions in Figure 7). We observe that there 

exists (for β sufficiently large) a region of 

intermediate values of τ where numerical 

flocking takes place, while there is no 

flocking for smaller or larger τ values. 

Moreover, we see that noise has a disruptive 

influence on flocking (the dark blue region 

is smaller in Figure 7(b) compared to Figure 

7(a)) 

5. DISCUSSION 

 We have studied a generalization of the 

Cucker–Smale model accounting for 

measurement errors, through introduction 

of multiplicative white noise, and for delays 

in information processing. This has led to a 

system of stochastic delayed differential 

equations, (1.1)–(1.2). In section 3, we have 

considered the communication rates 

between agents as given stochastic 

processes and derived a sufficient condition 

for flocking, which we define as asymptotic 

convergence of the agents’ velocities 

towards a common value. The condition is 

given in terms of the critical delay that 

guarantees 

 

Fig. 6. Agent velocities v1(t), v2(t) in 

sample solutions of the system (1.1)–(1.2), 

(1.3) with N = 2, λ = 1, β = 1 (weak 

coupling), on the time interval [0, 30] 

subject to the initial conditions (4.7) and 

(4.9). We use (a) σ = 0 and (b) σ = 0.5. 

flocking as a function of the noise level. 

Our analysis is based on the construction of 

a suitable Lyapunov function for the system 

and a study of its decay. As a by-product of 
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the analysis, we obtained a sufficient 

condition for asymptotic convergence of 

delayed geometric Brownian motion. 

The second part of the paper was devoted to 

systematic numerical simulations. First, we 

performed Monte Carlo simulations of 

delayed geometric Brownian motion and 

evaluated its asymptotic behavior based on 

a suitable “numerical indicator.” This led to 

the conclusion that the analytically derived 

sufficient condition for asymptotic 

convergence is qualitatively right—the 

convergence deteriorates with increasing 

noise level and delay. However, 

quantitatively this condition is far from 

optimal. Next, we simulated the Cucker–

Smale-type system with fixed 

communication rates and again compared 

the outcome with the analytical result. As 

before, the comparison showed 

 

Fig. 7. Decadic logarithm of the indicator 

Iβ,τ for simulations of the system (1.1)–

(1.2), (1.3) on the time interval [0, 30] with 

λ = 1, N = 2, (β, τ) ∈ [0.5, 2.5] × [0, 2]. We 

use (a) σ = 0, Q = 1 and (b) σ = 0.5, Q = 

100. The dark blue regions (color online) 

indicate numerical flocking. 

that, while qualitatively correct, the 

analytical formula produces too restrictive 

critical delays. Finally, we simulated the 

full Cucker–Smale system with delays and 

multiplicative noise. We used two regimes 

for the dependence of the communication 

rates on the agents’ distances: the strong 

coupling regime, which leads to 

unconditional flocking in the “classical” 

Cucker–Smale model, and the weak 

coupling regime, where flocking may or 

may not take place. In the strong coupling 

regime the numerical picture was similar to 

the previous simulation with fixed 

communication rates. On the other hand, in 

the weak coupling regime we observed a 

somewhat surprising behavior of the 

system—namely, that the introduction of an 

intermediate time delay may facilitate 

flocking. We call this phenomenon “time-

delay–induced flocking.” 

Our paper leaves several open questions. 

First of all, our analytical flocking 

condition is too restrictive compared to 

numerical results, so efforts should be made 

to improve it. Moreover, the analysis 

applied to the case when the 

communication rates are given and 

satisfying a certain structural assumption. 

This is in fact against the spirit of the 

original Cucker–Smale model where the 

communication rates depend on the mutual 

distances between agents. A possible 

extension of our analysis to this case 

remains an open problem. The main 

difficulty is due to the fact that it is not clear 

how to apply the classical bootstrapping 

argument that bounds the velocity 

fluctuations in terms of fluctuations in 

positions and vice versa. For the numerical 

part, it would be desirable to apply some 

multilevel Monte Carlo or importance 

sampling technique to obtain more accurate 

results. Moreover, the influence of the 

initial condition on the asymptotic behavior 

should be studied. Finally, the interesting 

phenomenon of delayinduced flocking 

deserves a detailed study, from both the 

analytical and numerical points of view. 
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