
 

1907 

ResMilitaris,vol.12,n°5, ISSN: 2265-6294 Spring (2022) 

EXPLORING LIMIT CYCLES IN CHEMICAL SYSTEMS: A DYNAMIC 

PERSPECTIVE 

1Dr. M. Rajeswar Reddy,2D.Rupalakshmi,3K.Narmada,4A. Swapna Reddy 
1Associate Professor &HOD, 234Assistant Professor 

Department Of Basic Sciences&Humanities 

Samskruti College of Engineering and Technology, Hyderabad 

 
ABSTRACT  

The dynamics of a chemical reaction 

network (CRN) is often modelled under 

the assumption of mass action kinetics by 

a system of ordinary differential equations 

(ODEs) with polynomial right-hand sides 

that describe the time evolution of 

concentrations of chemical species 

involved. Given an arbitrarily large integer 

K ∈ N, we show that there exists a CRN 

such that its ODE model has at least K 

stable limit cycles. Such a CRN can be 

constructed with reactions of at most 

second order provided that the number of 

chemical species grows linearly with K. 

Bounds on the minimal number of 

chemical species and the minimal number 

of chemical reactions are presented for 

CRNs with K stable limit cycles and at 

most second order or seventh order 

kinetics. We also show that CRNs with 

only two chemical species can have K 

stable limit cycles, when the order of 

chemical reactions grows linearly with K.  

Keywords: chemical reaction networks, 

limit cycles, mass action kinetics 

1 Introduction 

 Chemical reaction networks (CRNs) are 

often modelled by reaction rate equations, 

which are systems of first-order, 

autonomous, ordinary differential 

equations (ODEs) describing the time 

evolution of the concentrations of 

chemical species involved. Considering 

CRNs which are subject to the law of mass 

action, their reaction rate equations have 

polynomials on their right-hand sides [1, 

2]. The mathematical investigation of 

ODEs with polynomial right-hand sides 

has a long history and includes a number 

of challenging open mathematical 

problems, for example, Hilbert’s 16th 

Problem [3], which asks questions about 

the number and position of limit cycles of 

the planar ODE system of the form 

 

 

where f(x, y) and g(x, y) are real 

polynomials of degree at most n. Denoting 

H(n) the maximum number of limit cycles 

for the system (1.1)–(1.2), neither the 

value of H(n) (for n ≥ 2) nor any upper 

bound on H(n) have yet been found [4]. 

Since a quadratic system with 4 limit 

cycles has been constructed [5], we know 

that H(2) ≥ 4. Similarly, H(3) ≥ 13, 

because cubic systems with at least 13 

limit cycles have been found [6, 7]. 

Considering CRNs with two chemical 

species undergoing chemical reactions of 

at most n-th order, their reaction rate 

equations are given in the form (1.1)–(1.2), 

where f(x, y) and g(x, y) are real 

polynomials of degree at most n. In 

particular, if we denote by C(n) the 

maximum number of stable limit cycles in 

such reaction rate equations, then we have 

C(n) ≤ H(n). Considering CRNs with two 

chemical species undergoing chemical 

reactions of at most second order, it has 
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been previously shown [8, 9] that their 

reaction rate equations cannot have any 

limit cycles (i.e. C(2) = 0), while general 

ODEs with quadratic right-hand sides can 

have multiple limit cycles, with H(2) ≥ 4. 

In particular, we observe that finding 

CRNs with two chemical species which 

have, under mass action kinetics, multiple 

stable limit cycles, is even more 

challenging than finding planar polynomial 

ODEs with multiple limit cycles. 

Considering cubic systems, we have H(3) 

≥ 13, but most of the chemical systems 

(with at most third-order reactions) in the 

literature often have at most one limit 

cycle [10–12]. A chemical system with two 

stable limit cycles has been constructed 

[13], giving C(3) ≥ 2, but this is still much 

less than 13 limit cycles which can be 

found in some ODE systems with cubic 

right-hand sides in the literature [6, 7]. To 

obtain multiple stable limit cycles in 

chemical systems, we have to consider 

higherorder chemical reactions or systems 

with more than two chemical species [14, 

15]. 

Considering CRNs with N chemical 

species undergoing chemical reactions of 

at most n-th order, their reaction rate 

equations are given as the following 

system of ODEs 

 

where x = (x1, x2, . . . , xN ) ∈ R N is the 

vector of concentrations of N chemical 

species and its right-hand side f : R N → R 

N is a vector of real polynomials of degree 

at most n. In this paper, we prove the 

following first main result: 

Theorem 1 Let K be an arbitrary positive 

integer. Then there exists a CRN with 

N(K) chemical species which are subject 

to M(K) chemical reactions of at most 

seventh order such that  

(i) reaction rate equations (1.3) 

have at least K stable limit 

cycles,  

(ii) (ii) we have N(K) ≤ K + 2 and 

M(K) ≤ 29 K. 

Theorem 1 provides a stronger result than 

finding K limit cycles in a polynomial 

ODE system of the form (1.3), because not 

every polynomial ODE system 

corresponds to a CRN and, therefore, the 

set of reaction rate equations is a proper 

subset of ODEs with polynomial right-

hand sides. To make the existence of K 

limit cycles possible while restricting to 

polynomials of degree at most n = 7, we 

allow for more than two chemical species, 

replacing the two ODE system (1.1)–(1.2) 

by a more general ODE system (1.3) with 

N(K) equations. In particular, the next 

important question is how small the CRN 

can be so that it has K limit cycles. Our 

answer is partially given in part (ii) of 

Theorem 1 where we provide upper 

bounds on the number of chemical species 

involved and the number of chemical 

reactions (of at most seventh order). 

Another important parameter to consider is 

the maximum order of the chemical 

reactions involved, i.e. the degree n of the 

polynomials on the right-hand side of 

ODE system (1.3). Since systems of at 

most second-order reactions (the case n = 

2) is of special interest in the theory of 

CRNs and applications [16], we state our 

second main result as: 

Theorem 2 Let K be an arbitrary positive 

integer. Then there exists a CRN with 

N(K) chemical species which are subject 

to M(K) chemical reactions of at most 

second order such that  

(i) reaction rate equations (1.3) 

have at least K stable limit 

cycles, 

(ii)  (ii) we have N(K) ≤ 7K + 14 

and M(K) ≤ 42 K + 24. 
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By restricting to second-order 

(bimolecular) reactions, we obtain CRNs 

with more realistic second-order kinetics, 

but our construction increases the number 

of species and chemical reactions 

involved, as it can be seen by comparing 

parts (ii) of Theorems 1 and 2. The precise 

definitions of CRNs, mass action kinetics, 

reaction rate equations and limit cycles in 

N-dimensional systems are given in 

Section 2. In both Theorems 1 and 2, we 

restrict our considerations to systems 

described by polynomial ODEs where the 

degree of polynomials is bounded by a 

constant independent of K, i.e. we consider 

polynomials of the degree at most n = 7 (in 

Theorem 1) or at most n = 2 (in Theorem 

2), and we increase the number of 

chemical species, N(K), as K increases, to 

get K stable limit cycles. Another approach 

is to restrict our considerations to chemical 

systems with only N = 2 chemical species. 

In Section 8, we construct two-species 

CRNs with K stable limit cycles which 

include chemical reactions of at most 

n(K)-th order, where n(K) = 6K −2. This 

establishes our third main result: 

Theorem 3 Let C(n) be the maximum 

number of stable limit cycles of reaction 

rate equations (1.1)–(1.2) corresponding to 

CRNs with two chemical species 

undergoing chemical reactions of at most 

n-th order. Then we have 

 

where the floor function ⌊.⌋ denotes the 

integer part of a positive real number. 

To prove Theorems 1, 2 and 3, we first 

construct a planar system given by 

equations (1.1)–(1.2), where f and g are 

continuous non-polynomial functions 

chosen in such a way that the ODE system 

(1.1)–(1.2) has K stable limit cycles in the  

positive quadrant [0, ∞)×[0, ∞). Such a 

planar non-polynomial ODE system is 

constructed in Section 3. In Section 4, we 

then increase the number of chemical 

species from 2 to N(K) to transform the 

non-polynomial ODE system to a 

polynomial one. In Section 5, we modify 

this construction by using an x-factorable 

transformation to arrive at reaction rate 

equations corresponding to a CRN [17]. 

Theorem 1 is then proven in Section 6 by 

showing that the reaction rate equations 

have at least K stable limit cycles. This is 

followed by our proof of Theorems 2 and 3 

in Sections 7 and 8, respectively. 

2 Notation and mathematical 

terminology 

Definition 1 A chemical reaction network 

(CRN) is defined as a collection (S, C, R) 

consisting of chemical species S, reaction 

complexes C and chemical reactions R. We 

denote by N the number of chemical 

species and by M the number of chemical 

reactions, i.e. |S| = N and |R| = M. Each 

chemical reaction is of the form 

 

where Xi , i = 1, 2, . . . , N, are chemical 

species, and linear combinations PN i=1 

νi,jXi and PN i=1 ν ′ i,jXi of species with 

non-negative integers νi,j and ν ′ i,j are 

reaction complexes. 

Definition 2 Let (S, C, R) be a CRN with 

N chemical species and M chemical 

reactions. Let xi(t) be the concentration of 

chemical species Xi ∈ S, i = 1, 2, . . . , N. 

The time evolution of xi(t) is, under the 

assumption of the mass action kinetics, 

described by the reaction rate equations, 

which are written as a system of N ODEs 

in the form 
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where kj , j = 1, 2, . . . , M, is a positive 

constant called the reaction rate for the j-th 

reaction. 

The reaction rate equations (2.2) are ODEs 

of the form (1.3), where the right-hand 

side f : R N → R N is a vector of real 

polynomials. However, not every 

polynomial ODE system can be obtained 

as the reaction rate equations of a CRN as 

we formalize in the following Lemma. 

Lemma 1 Consider a system of N ODEs 

with polynomial right-hand sides 

describing the time evolution of xi(t), i = 

1, 2, . . . , N, in the form 

 

where αi,j are real constants and νi,j are 

nonnegative integers, for i = 1, 2, . . . , N 

and j = 1, 2, . . . , M. Then the polynomial 

ODE system (2.3) can be written as the 

reaction rate equations (2.2) of a CRN if 

and only if 

 

Proof The reaction rate equations (2.2) are 

of the form (2.3). The non-negativity 

condition (2.4) follows from νi,j = 0 and 

the non-negativity of both kj and ν ′ i,j in 

equation (2.2). 

Conversely, if an ODE is of the form (2.3) 

and αi,j > 0, then we can choose ν ′ i,j = 

νi,j + 1 in equation (2.2) and put the 

reaction rate as kj = αi,j . On the other 

hand, if αi,j < 0, then the condition (2.4) 

implies that νi,j ≥ 1. Therefore, we can put 

ν ′ i,j = νi,j − 1 and kj = −αi,j > 0. 

In this paper, we prove the existence of 

limit cycles in chemical systems in 

Sections 6, 7 and 8 by proving the 

existence of limit cycles in systems of 

ODEs (2.3) with polynomial right-hand 

sides satisfying the condition (2.4). Then 

the approach used in the proof of Lemma 1 

can be used to construct the corresponding 

CRN. However, the construction of a CRN 

corresponding to reaction rate equations is 

not unique. For example, consider a term 

of the form −x 3 1 on the right-hand side 

of equation (2.3). Using the construction in 

the proof of Lemma 1, it would correspond 

to the chemical reaction 3X −→ 2X with 

the rate constant equal to 1, but the same 

term can also correspond to the chemical 

reaction 3X −→ X with the rate constant 

equal to 1/2. We conclude this section by a 

formal definition of a stable limit cycle. 

Definition 3 Consider a system of N 

ODEs given by (1.3), where their right-

hand side f : R N → R N is continuous. A 

stable limit cycle is a trajectory xc(t) for t 

∈ [0, ∞) such that 

(i) xc(t) is a solution of the ODE 

system (1.3),  

(ii)  there exists a positive constant T > 

0 such that xc(T) = xc(0) and xc(t) 

6= xc(0) for 0 < t < T,  

(iii) there exists ε > 0 such that 

dist{x(0), xc} < ε implies dist{x(t), 

xc} → 0 as t → ∞. 

In Definition 3, constant T is the period of 

the limit cycle and the property (iii) states 

that the limit cycle attracts all trajectories 

which start sufficiently close to it. The 

distance in the property (iii) of Definition 

3 is the Euclidean distance defined by 

 

for z = [z1, z2, . . . , zN ] ∈ R N and xc(t) 

= [xc,1(t), xc,2(t), . . . , xc,N (t)] ∈ R N 

3 Planar ODE systems with arbitrary 

number of limit cycle 

In this section, we construct a planar ODE 

system of the form (1.1)–(1.2) with K 

limit cycles in the positive quadrant. It is 

constructed as a function of 2K 
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parameters denoted by a1, a2, . . . , aK and 

b1, b2, . . . , bK, as 

 

 

 

Fig. 1 (a) Twenty illustrative trajectories 

of the ODE system (3.1)–(3.2) for K = 4 

and the parameter choices a1 = b1 = a2 = 

b3 = 2 and a3 = b2 = a4 = b4 = 6. As t → 

∞, all presented trajectories approach one 

of the four limit cycles, which are plotted 

as the black dashed lines. 

(b) Twenty illustrative trajectories of the 

ODE system (3.1)–(3.2) for K = 4 and the 

parameter choices a1 = b1 = a2 = b3 = 2 

and a3 = b2 = a4 = b4 = 4. As t → ∞, 

some trajectories converge to the stable 

limit cycle denoted by the black dashed 

line, while some trajectories, which 

started inside the limit cycle converge to 

the stable fixed point denoted as the red 

dot. 

An illustrative dynamics of the ODE 

system (3.1)–(3.2) is shown in Figure 1(a) 

for K = 4, where the ODE system has four 

limit cycles, which is highlighted in 

Figure 1(a) by plotting some 

representative trajectories. The existence 

of K stable limit cycles for the ODE 

system (3.1)–(3.2) can also be proven 

analytically, as it is done in Lemma 2. In 

Figure 1(a), we have presented an 

example with K = 4 and parameter 

choices 

(a1, b1) = (2, 2), (a2, b2) = (2, 6), (a3, b3) 

= (6, 2) and (a4, b4) = (6, 6). 

In particular, the distance between points 

(ai , bi), i = 1, 2, 3, 4, is at least four. If we 

decrease this distance, then the ODE 

system (3.1)–(3.2) can have less limit 

cycles. This is highlighted in Figure 1(b), 

where we present an example with K = 4 

and parameter choices 

(a1, b1) = (2, 2), (a2, b2) = (2, 4), (a3, b3) 

= (4, 2) and (a4, b4) = (4, 4) 

In Figure 1(b), we observe that there is 

only one limit cycle, denoted as the black 

dashed line. This limit cycle is stable and 

a number of illustrative trajectories 

converge to this limit cycle as t → ∞. 

However, there is also a stable equilibrium 

point at (3, 3), which attracts some of the 

trajectories. In particular, we can only 

expect that the ODE system (3.1)–(3.2) 

will have K stable limit cycles provided 

that points (ai , bi) are sufficiently 

separated. This is proven in our next 

lemma. 

Lemma 2 Let us assume that 

 

where i, j = 1, 2, . . . , K. Then the ODE 

system (3.1)–(3.2) has at least K stable 

limit cycles 

Proof We define the sets 

 

Then the condition (3.3) implies that 

Ωi ∩ Ωj = ∅, for all i 6= j, where i, j = 1, 

2, . . . , K, 

i.e. the sets Ωi are pairwise disjoint sets. 

We will show that each of them contains 

at least one stable limit cycle. The 

boundary of Ω consists of two parts: outer 

and inner circles defined by 

 

And 
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respectively, that is, ∂Ωi = ∂Ωi1 ∪ ∂Ωi2. 

Define the following functions for k = 1, 

2, . . . , K: 

 

 

Then, the ODE system (3.1)–(3.2) can be 

rewritten as 

 

 

Where 

 

First, we will show that Ωi for i = 1, 2, . . . 

, K does not contain any equilibrium 

points. Let us consider any point (x ∗ , y∗ 

) ∈ Ωi . Substituting 

 

in the terms for k = i in (3.11), we obtain 

 

 

The first terms in (3.13)–(3.14) can be 

rewritten as 

 

where ˜θ = α with tan α = r 2 − 1 and π/2 < 

α < 3π/2 in the case of (3.13) and ˜θ = α − 

π/2 in the case of (3.14). Since we have 

 

for any θ and α, at least one of the two 

terms expressed in the form (3.15) is 

greater than 

 

which has a minimum √ 2/9 when 1/2 < r2 

< 2. Therefore, at least one of the absolute 

values of the i-th components, fi(x ∗ − ai , 

y∗ − bi) and gi(x ∗ − ai , y∗ − bi), in 

(3.13)–(3.14) at any point (x ∗ , y∗ ) ∈ Ωi 

is greater than equal to √ 2/9. Without loss 

of generality, we assume 

 

Then we have |fi(x ∗ −ai , y∗ −bi)| ≥ √ 2/9. 

We want to show that the second term in 

(3.13) (i.e. the sum) has a smaller 

magnitude than the first term fi(x ∗ − ai , 

y∗ − bi) so that we could conclude that f(x 

∗ , y∗ ) 6= 0. The k-th component in the 

second term in (3.13) is bounded by 

 

where (z1, z2) = (x ∗ − ak, y∗ − bk). 

Denoting c 2 = z 2 1 + z 2 2 , we have 

 

Using |zi | ≤ c and (3.17), we estimate 

(3.16) as

 

Since (x ∗ , y∗ ) ∈ Ωi and (ak, bk) ∈ Ωk 

where k 6= i, our assumption (3.3) implies 

that c 2 ≥ 2. Thus, (3.18) becomes 

 

Therefore, the magnitude of the second 

term in (3.13) is bounded by 4(K − 1)/c3 . 

Since |fi(x ∗ − ai , y∗ − bi)| ≥ √ 2/9, a 

sufficient condition for f(x ∗ , y∗ ) 6= 0 is 

 

Using the assumption (3.3), the 

is bounded by 
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which implies the sufficient condition 

(3.20). Therefore, (x ∗ , y∗ ) is not an 

equilibrium point.  

Next, consider an arbitrary point (xb , yb) 

∈ ∂Ωi1. Let us calculate the scalar product 

of vector 

 

Using (3.11), we obtain this scalar product 

as 

 

The first two terms in (3.23) become 

 

which has a magnitude greater than 2/9 

using (3.17) with c 2 = (xb−ai) 2+(yb−bi) 

2 = 2. Using (3.19), |xb − ai | ≤ √ 2 and |yb 

− bi | ≤ √ 2, we can estimate the third and 

fourth terms in (3.23), namely, we have 

 

where d 2 = (xb − ak) 2 + (yb − bk) 2 . 

Then the sum of the third and fourth terms 

in (3.23) is bounded by 8√ 2(K − 1)/d3 . 

Therefore, the sufficient condition that the 

scalar product in (3.23) is negative is 

 

Using the assumption (3.3), the distance d 

= p (xb − ak) 2 + (yb − bk) 2 is bounded 

by 

 

which implies the sufficient condition 

(3.25). Therefore, the vector 

 

always points inside the domain Ωi for 

each boundary point (xb , yb) ∈ ∂Ωi1. 

Similarly, for an arbitrary point (xb , yb) ∈ 

∂Ωi2, we can show that the scalar product 

of vectors in (3.22) is always positive due 

to that the sum of the first two terms in 

(3.23) is equal 

 

which is greater than 2/9 by using (3.17) 

with c 2 = 1/2, and the sum of the third 

and fourth terms in (3.23) is bounded by 

8(K − 1)/(d 3√ 2). Therefore, the sufficient 

condition that the scalar product in (3.23) 

is positive 

 

which is a weaker condition then the 

condition (3.25), i.e. it is again satisfied 

because of our assumption (3.3). This 

implies that the scalar product in (3.23) is 

positive. Thus, the directional vector 

always points inside the domain Ωi on all 

parts of the boundary ∂Ωi .  

Therefore, applying Poincar´e-Bendixson 

theorem, we conclude that each Ωi 

contains at least one stable limit cycle. 

Since Ωi , i = 1, 2, . . . , K, are pairwise 

disjoint, this implies that the ODE system 

(3.1)–(3.2) has at least K stable limit 

cycles. 

4 ODE systems with polynomial right-

hand sides and arbitrary number of 

limit cycles 

Considering an auxiliary variable 

 

we can formally convert the non-

polynomial ODE system (3.1)–(3.2) to a 

system of (K + 2) ODEs with polynomial 

right-hand sides [18]. We obtain 
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for i = 1, 2, . . . , K. The dynamics of the 

original ODE system (3.1)–(3.2) with 

initial condition (x(0), y(0)) = (x0, y0) is 

the same as the dynamics of the extended 

ODE system (4.2)–(4.4), when we 

initialize the additional variables by 

 

However, when we use a general initial 

condition, 

 

the trajectory of the extended ODE system 

(4.2)–(4.4) may become unbounded and it 

may not converge to a limit cycle. To 

illustrate this behaviour, let us consider 

the initial condition 

 

where c > 0 is a constant. If c = 1, then the 

initial condition (4.6) reduces to (4.5). In 

particular, Figure 1(a) shows an 

illustrative behaviour of both the extended 

ODE system (4.2)–(4.4) for c = 1 and the 

planar ODE system (3.1)–(3.2), assuming 

that we use a sufficiently accurate 

numerical method to solve ODEs (4.2)–

(4.4) and plot the projection of the 

calculated trajectory to the (x, y)-plane. 

Changing c = 1 to c = 0.5, we plot the 

dynamics of the extended ODE system in 

Figure 2(a), where the black dots denote 

the end points of the calculated 

trajectories at the final time (t = 100). We 

observe that only the trajectories which 

started ‘inside a limit cycle’ (i.e. their 

projections to the (x, y)-plane are initially 

inside a black dashed circle) seem to 

converge to it, while the other trajectories 

do not seem to approach the ‘limit cycles’. 

This is indeed the case even if we 

continue these trajectories for times t > 

100. In fact, depending on the accuracy of 

the numerical method used, all trajectories 

eventually stop somewhere in the phase 

plane, because ui(t) → 0 as t → ∞. 

On the other hand, considering the 

extended ODE system (4.2)–(4.4) with the 

initial condition (4.6) for c > 1, some 

additional variables ui(t) tend to infinity as 

t → ∞, and we again do not observe 

sustained oscillations in our numerical 

experiments (results not shown). In 

particular, the formal conversion of the 

non-polynomial ODE system (3.1)–(3.2) 

into the polynomial system (4.2)–(4.4) 

does not preserve the dynamics well. 

Therefore, we augment our polynomial 

ODE system (3.1)–(3.2) in a different 

way. We introduce K new variables vi , i = 

1, 2, . . . , K, and formulate the extended 

ODE system as the following (K + 2) 

equations: 

 

 

Fig. 2 (a) Twenty illustrative trajectories 

of the ODE system (4.2)–(4.4) for K = 4, 

the parameter choices a1 = b1 = a2 = b3 = 

2, a3 = b2 = a4 = b4 = 6 and the initial 

condition (4.6) with c = 1/2. The black 

dots denote the final position of each 

calculated trajectory at time t = 100. The 

black dashed lines are limit cycles shown 

in Figure 1(a). (b) Twenty illustrative 

trajectories of the ODE system (4.7)–(4.9) 

for K = 4, the parameter choices ε = 1, a1 
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= b1 = a2 = b3 = 2, a3 = b2 = a4 = b4 = 6 

and the initial condition (4.6) with c = 1/2. 

As t → ∞, all trajectories approach one of 

the four limit cycles, which are plotted as 

the black dashed lines. The black dots 

denote the final position of each 

calculated trajectory at time t = 100. 

 

 

where ε > 0 is a constant. The first two 

ODEs (4.7)–(4.8) are the same as ODEs 

(4.2)– (4.3) with vk taking place of uk. 

The difference is in the dynamics of the 

additional variables, i.e. in equation (4.9) 

which removes the non-polynomial factor 

(4.1) in a different way. Rather than 

defining new variable ui in the form (4.1) 

and deriving ODEs which have equivalent 

dynamics to the ODE system (3.1)–(3.2) 

for a very special initial condition (4.5), 

we have written the ODE (4.9) in such a 

way that it formally recovers the non-

polynomial factor (4.1) in the limit ε → 0, 

which will be used in our proof of Lemma 

3, where we consider small values of ε. 

However, even for larger values of ε, the 

ODE system (4.7)–(4.9) has multiple limit 

cycles for general initial conditions, as it 

is illustrated for ε = 1 and K = 4 in Figure 

2(b), where all plotted trajectories finish 

on a limit cycle (see the final calculated 

positions, at time t = 100, plotted as black 

dots). 

Next, we prove that the extended system 

(4.7)–(4.9) has K limit cycles in the sense 

of Definition 3 for general values of K. 

Since (4.7)–(4.9) is a system of (K + 2) 

ODEs, we cannot directly apply the 

Poincar´e-Bendixson theorem as we did 

for the planar system in the proof of 

Lemma 2. While one possible approach to 

proving the existence of limit cycles is to 

work with generalizations of the 

Poincar´e-Bendixson theorem to higher 

dimensional ODEs [19–21], we will base 

our proof of Lemma 3 on the application 

of Tikhonov’s theorem [22, 23] and the 

result of Lemma 2. In particular, we show 

that the extended system (4.7)–(4.9) is a 

polynomial system which has K limit 

cycles for sufficiently small values of ε. 

Lemma 3 Let us assume that parameters 

ai > 0 and bi > 0, i = 1, 2, . . . , K, satisfy 

the inequality (3.3). Then there exists ε0 > 

0 such that the ODE system (4.7)–(4.9) 

has at least K stable limit cycles for all ε ∈ 

(0, ε0). 

Proof Let us consider ε = 0. Then the 

right-hand side of the ODE (4.9) is equal 

to zero. This equation can be solved for vi 

, i = 1, 2, . . . , K, to obtain vi = qi(x, y), 

where we define 

 

Substituting vi = qi(x, y) into (4.7)–(4.8), 

we obtain that the reduced problem in the 

sense of Tikhonov’s theorem [22, 23] is 

equal to 

 

 

where functions f(·, ·) and g(·, ·) are 

defined in (3.1) and (3.2). This means that 

the reduced system (4.11)–(4.12) 

corresponding to the fast–slow extended 

ODE system (4.7)–(4.9) is the same as our 

original non-polynomial ODE system 

(3.1)–(3.2). Therefore, using Lemma 2, 

we know that the reduced system (4.11)–

(4.12) has (at least) K stable limit cycles 

in the sense of Definition 3, i.e. there exist 

K solutions. 

 

of the reduced system (4.11)–(4.12) which 

are periodic with period Ti > 0 for i = 1, 2, 
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. . . , K. Moreover, there exist εi > 0, i = 1, 

2, . . . , K, such that any solution (x(t), 

y(t)) of the reduced system (4.11)–(4.12) 

approaches the limit cycle (xc,i(t), yc,i(t)) 

as t → ∞ provided that the initial 

condition (x(0), y(0)) satisfies 

 

Next, we define pairwise disjoint sets Ωi 

⊂ R K+2 for i = 1, 2, . . . , K 

 

, where functions qj (·, ·) are defined by 

(4.10). Let us d 

 

. Let ε ∈ (0, ε0) be chosen arbitrarily. To 

show that the extended fast-slow 

polynomial ODE system (4.7)–(4.9) has 

(at least) K stable limit cycles, it is 

sufficient to show that each set Ωi 

contains one stable limit cycle. We will do 

this by applying Tikhonov’s theorem [22, 

23]. Considering the ODEs (4.9) for i = 1, 

2, . . . , K, where x > 0 and y > 0 are taken 

as parameters, we obtain the adjoined 

system as a K-dimensional system of 

ODEs with an isolated stable equilibrium 

point [q1(x, y), q2(x, y), . . . , qK(x, y)], 

where qi(·, ·) is defined in (4.10). This 

equilibrium point attracts the solutions of 

adjoined system for any initial condition. 

Therefore, the ODE system (4.7)–(4.9) 

has a limit cycle in Ωi . Moreover, this 

limit cycle attracts any solution x(t), y(t), 

v1(t), v2(t), . . . , vK(t)  of the system 

(4.7)–(4.9) with initial condition satisfying 

x(0), y(0), v1(0), v2(0), . . . , vK(0) ∈ 

5 Chemical systems with arbitrary 

many limit cycles  

To construct a CRN with K limit cycles, 

we first construct a system of ODEs with 

polynomial right-hand sides which satisfy 

the condition (2.4) in Lemma 1, i.e. it will 

be a system of reaction rate equations, 

which correspond to a CRN. Once we 

have such reaction rate equations, there 

are infinitely many CRNs described by 

them, so we conclude this section by 

specifying some illustrative CRNs 

corresponding to the derived reaction rate 

equations.  

Our starting point is the polynomial ODE 

system (4.7)–(4.9), which has K limit 

cycles provided that the conditions of 

Lemma 3 are satisfied. The reaction rate 

equations are constructed by applying the 

so called x-factorable transformation [12] 

to the right-hand sides of equations (4.7) 

and (4.8). We do not modify the right-

hand sides of ODEs (4.9), because they 

already satisfy the conditions of 

Definition 2. We obtain the ODE system: 

 

 

 

The illustrative dynamics of the ODE 

system (5.1)–(5.3) is presented in Figure 

3(a), where we use the same parameters as 

we use in Figure 2(b) for the ODE system 

(4.7)– (4.9). We observe that the presented 

trajectories converge to one of the four 

limit cycles as in Figure 2(b). The shape 

of the limit cycles is slightly modified by 

using the x-factorable transformation, but 

the limit cycles are still there as we 

formally prove in Section 6. 

The x-factorable transformations modify 

the dynamics on the x-axis and y-axis. In 

Figure 3(a), we present illustrative 

trajectories which all start with the 

positive values of x(0) and y(0), while in 

Figure 2(b), some of the illustrative 

trajectories have zero initial values of x(0) 

and y(0). To get a comparable plot, we use 
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the same initial conditions in both Figure 

2(b) and Figure 3(a), with the only 

exception that all initial conditions with 

x(0) = 0 (resp. y(0) = 0) in Figure 2(b) are 

replaced by x(0) = 1/2 (resp. y(0) = 1/2) in 

Figure 3(a). We note that if we start a 

trajectory of the ODE system (5.1)–(5.3) 

on the x-axis or the y-axis, then it stays on 

the axis. In Figure 3(b), we present 

illustrative dynamics of the ODE system 

(5.1)–(5.3) for K = 9, showing that each 

computed trajectory converges to one of 

the 9 limit cycles denoted by black dashed 

lines. To illustrate that this behaviour does 

not require special choices of initial 

conditions, we used different initial 

conditions for x(0) and y(0) together with 

the initial conditions for variables vi 

satisfying 

 

However, a similar figure can be obtained 

if we replace (5.4) with the initial 

condition (4.6), or if we initialize all 

values of vi , i = 1, 2, . . . , K as zero 

(results not shown).  

A CRN corresponding to reaction rate 

equations (5.1)–(5.3) can be obtained (by 

applying the construction in the proof of 

Lemma 1) as the CRN with K + 2 

chemical species, i.e. using the notation in 

Definition 1, we have 

 

 

Fig. 3 (a) Twenty illustrative trajectories 

of the ODE system (5.1)–(5.3) for K = 4, 

the parameter choices a1 = b1 = a2 = b3 = 

2, a3 = b2 = a4 = b4 = 6, ε = 1 and the 

initial condition (4.6) with c = 1/2. As t → 

∞, all trajectories approach one of the four 

limit cycles, which are plotted as the black 

dashed lines. As in Figure 2, the black 

dots denote the final position of each 

calculated trajectory at time t = 100.  

(b) Twenty illustrative trajectories of the 

ODE system (5.1)–(5.3) for K = 9, the 

parameter choices a1 = b1 = a2 = b3 = a6 

= b7 = 2, a3 = b2 = a4 = b4 = a5 = b8 = 6, 

a7 = a8 = a9 = b5 = b6 = b9 = 10, ε = 1 

and the initial condition (5.4). As t → ∞, 

all trajectories approach one of the nine 

limit cycles, which are plotted as the black 

dashed lines. The black dots denote the 

final position of each calculated trajectory 

at time t = 100. 

To specify the reaction complexes and 

chemical reactions, we expand the right-

hand side of reaction rate equations (5.1)–

(5.3). First, we rewrite ODEs (5.3) as 

 

where ki,j , i = 1, 2, . . . , K, j = 1, 2, . . . , 

11, are positive constants given by 

 

Consequently, the right-hand side of 

equation (5.3) can be interpreted as the set 

of 14 chemical reactions for each i = 1, 2, 

. . . , K. We define it as 

 

Consequently, reaction rate equations 

(5.3) correspond to 14 K chemical 

reactions in sets Ri , i = 1, 2, . . . , K. 

Similarly, we rewrite ODEs (5.1)–(5.2) as 
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where ki,j , i = 1, 2, . . . , K, j = 12, 13, . . . 

, 21, are constants given by 

 

Considering sufficiently large ai and bi 

(say, for ai > 1 and bi > 1), the constants 

(5.11) are positive. Moreover, since the 

term −vix 2 y 2 appears in both equations 

(5.9) and (5.10), the right-hand sides of 

equations (5.1)–(5.2) can be interpreted as 

the set of 15 K chemical reactions. We 

define 

 

Then, we conclude that the reaction rate 

equations (5.1)–(5.3) correspond to the 

CRN with N = K + 2 chemical species and 

29 K chemical reactions of at most 

seventh order given by 

 

The CRN (S, C, R) consisting of chemical 

species S given by (5.5) and chemical 

reactions R given by (5.13) is the CRN 

which we will use to prove Theorem 1 in 

Section 6. The corresponding set of 

reaction complexes C can be inferred from 

the provided lists of reactions Ri and R∗ i 

, i = 1, 2, . . . , K, given by (5.8) and 

(5.12). 

6 Proof of Theorem 1  

The idea of the proof of Theorem 1 is 

similar to the one chosen in Sections 3 and 

4, where we have first proved Lemma 2 

about the existence of K limit cycles in the 

planar ODE system (3.1)–(3.2) and then 

we have used it to prove the existence of 

K limit cycles in the (K + 2)-dimensional 

ODE system in Lemma 3. In this section, 

we will again start by formulating Lemma 

4 for a planar ODE system, which we will 

use in Lemma 5 to prove Theorem 1 

considering the (K + 2)-dimensional ODE 

system (5.1)–(5.3). The planar ODE 

system is derived by applying the x-

factorable transformation to the planar 

ODE system (3.1)–(3.2). We obtain 

 

 

where we have used the notation fk(·, ·) 

and gk(·, ·) introduced in equations (3.7), 

(3.8) and (3.11).  

The dynamics of the ODE system (6.1)–

(6.2) is similar to the dynamics of the 

original planar ODE system (3.1)–(3.2) in 

the same way as the dynamics of the (K + 

2)-dimensional extended ODE system 

(5.1)–(5.3) is similar to the dynamics of 

the (K+2)-dimensional extended ODE 

system (4.7)–(4.9). We have already 

observed in Figure 3(a) that the limit cycle 

around the point (ai , bi) = (6, 6) of the 

ODE system (4.7)–(4.9) is relatively 

circular. On the other hand, the shape of 

the limit cycles can more significantly 

differ between Figures 2(b) and 3(a) if the 

corresponding parameters ai and bi are not 

equal to each other. Motivated by this 

observation, we will study the case ai = bi 

in Lemma 4 and prove that it is possible to 

choose these parameters in a way that the 

planar ODE system (6.1)–(6.2) has (at 

least) K stable limit cycles. This result is 

sufficient for the proof of Theorem 1. 

However, we also note that the existence 

of limit cycles of the ODE system (6.1)–

(6.2) is not restricted to the case ai = bi 

and a more general lemma could be stated 
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and proven, as we did in Lemma 2 where 

the existence of K limit cycles has been 

proven under a relatively general 

condition (3.3). The advantage of the case 

ai = bi is that it simplifies the proof of 

Lemma 4, because we can use the 

approach and notations introduced in the 

proof of Lemma 2. 

Lemma 4 Let us assume that 

 

for i = 1, 2, . . . , K. Then the ODE system 

(6.1)–(6.2) has at least K stable limit 

cycles. 

Proof Let us define regions Ωi ⊂ R 2 , i = 

1, 2, . . . , K, together with their boundary 

parts ∂Ωi1 and ∂Ωi2 by (3.4), (3.5) and 

(3.6). Our choice of values of ai and bi in 

(6.3) satisfies the assumption (3.3) in 

Lemma 2. Therefore, the ODE system 

(3.1)–(3.2) has with parameters given by 

(6.3) at least K stable limit cycles. 

Moreover, in the proof of Lemma 2, we 

have shown that each region Ωi does not 

include any equilibrium of the planar 

ODE system (3.1)–(3.2). Any equilibrium 

of the ODE system (6.1)– (6.2) is either 

located on the x-axis or y-axis, or it is also 

an equilibrium of the ODE system (3.1)–

(3.2). However, our assumption (6.3) 

implies that no region Ωi , i = 1, 2, . . . , K, 

intersects with the x-axis or y-axis. 

Therefore, we conclude that each Ωi , for i 

= 1, 2, . . . , K, does not contain any 

equilibrium of the ODE system (6.1)–

(6.2).  

Next, consider any point (xb , yb) ∈ ∂Ωi . 

We will compute the scalar product of 

vectors 

 

by rewriting the second vector as a sum of 

two vectors  

 xb f(xb , yb), yb g(xb , yb)  = xb f(xb , 

yb), g(xb , yb)  + 0,(yb − xb) g(xb , yb)  . 

(6.5) The scalar product of vectors. 

 

6) has already been calculated in the proof 

of Lemma 2 starting with equation (3.22). 

We obtained that it is negative for (xb , 

yb) ∈ ∂Ωi1 and positive for (xb , yb) ∈ 

∂Ωi2. Therefore, the vector xb f(xb , yb), 

g(xb , yb)  always points inside the 

domain Ωi on all parts of the boundary 

∂Ωi . Next, we want to show that this 

conclusion also holds if vector xb f(xb , 

yb), g(xb , yb)  is modified by adding the 

vector 0,(yb −xb) g(xb , yb)  as it is done 

in equation (6.5). To do this, we note that 

our choice of parameters (6.3) implies that 

 

2K 2 for all i, j = 1, 2, . . . , K, which not 

only satisfies the assumption (3.3) but it 

can be used in equation (3.26) to make a 

stronger conclusion that the scalar product 

of vectors (6.6) is at most −1.45 for (xb , 

yb) ∈ ∂Ωi1 and at least 1.45 for (xb , yb) 

∈ ∂Ωi2. Thus, we only need to show that 

the scalar product of vectors 

 

(6.7) is in absolute value less than 1.45 to 

conclude that the original scalar product 

(6.4) is negative for (xb , yb) ∈ ∂Ωi1 and 

positive for (xb , yb) ∈ ∂Ωi2. Using the 

definition of g(·, ·) in (3.11) and the 

notation z1 = xb − ai , z2 = yb − bi 

introduced in the proof of Lemma 2, we 

have yb −xb = z2 −z1 and the scalar 

product (6.7) can be written as 

 

 Since we have 
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≤ 1.4 and the second term in (6.8) is also 

less than 0.05, we conclude that the scalar 

product (6.4) is negative for (xb , yb) ∈ 

∂Ωi1 and positive for (xb , yb) ∈ ∂Ωi2. 

Therefore, the vector xb f(xb , yb), yb 

g(xb , yb)  always points inside the 

domain Ωi on all parts of the boundary 

∂Ωi . In particular, applying Poincar´e-

Bendixson theorem, we conclude that 

each Ωi contains at least one stable limit 

cycle. Since Ωi , i = 1, 2, . . . , K, are 

pairwise disjoint, this implies that the 

ODE system (6.1)–(6.2) has at least K 

stable limit cycles. 

Lemma 5 Let us assume that constants ai 

, bi , i = 1, 2, . . . , K are given by (6.3). 

Then there exists ε0 > 0 such that the 

reaction rate equations (5.1)–(5.3) have at 

least K stable limit cycles for all ε ∈ (0, 

ε0). 

 Proof This follows directly from Lemma 

4 and Tikhonov’s theorem[22,23] 

, 23]. The existence of K limit cycles in 

the CRN (5.13) follows by application of 

Lemma 5. The chemical system (5.13) has 

(K + 2) chemical species X, Y, V1, V2, . . 

. , VK, which are subject to 29K chemical 

reactions, so, by construction, we also 

establish bounds in part (ii) of Theorem 1 

on N(K) and M(K). This concludes the 

proof of Theorem1. 

7 Proof of Theorem 2 

 In Theorem 1, we have established that 

the reaction rate equations (5.1)–(5.3) 

describing the CRN (5.13) have at least K 

stable limit cycles. Since the right-hand 

sides of ODEs (5.1)–(5.3) include 

polynomials up to the order 7, the 

resulting chemical reactions (5.13) are 

reactions of the order at most 7. However, 

in practice, every higher-order reactions 

can be subdivided into elementary steps, 

which are at most bimolecular (second 

order). Therefore, we focus here on the 

proof of Theorem 2 which restricts our 

considerations to at most second-order 

kinetics. We prove it by further extending 

the number of variables in the reaction 

rate equations (5.1)–(5.3), i.e. by adding 

intermediary chemical species and 

elementary reactions into the CRN (5.13). 

The resulting CRN has N = 7K + 14 

chemical species denoted by 

 

where we use the notation introduced in 

Definition 1 of CRNs. The concentrations 

x, y, vi , w1, w2, . . . , w12, zi,j for i = 1, 

2, . . . , K and j = 1, 2, . . . , 6 evolve 

according to reaction rate equations 

 

 

 

 

 

 

 

 

 

where δ > 0, ε > 0 and ki,j , i = 1, 2, . . . , 

K, j = 1, 2, . . . , 21, are positive constants 

given by (5.7) and (5.11). Considering the 

limit δ → 0 in equations (7.5)–(7.10), we 

obtain 

 

 



 

1921 

ResMilitaris,vol.12,n°5, ISSN: 2265-6294 Spring (2022) 

zi,1 = vix, zi,2 = viy, zi,3 = vix 3 , zi,4 = 

viy 3 , zi,5 = vixy 2 , zi,6 = vix 2 y. 

Substituting the limiting values (7.11) for 

wℓ and zi,j , ℓ = 1, 2, . . . , 12, i = 1, 2 . . . , 

K, j = 1, 2, . . . , 6, into equations (7.2)–

(7.4), we obtain equations (5.9), (5.10) 

and (5.6), which are equal to the reaction 

rate equations (5.1)–(5.3). In particular, 

we deduce the following lemma. 

Lemma 6 Let us assume that constants ai 

, bi , i = 1, 2, . . . , K are given by (6.3). 

Then there exist δ0 > 0 and ε0 > 0 such 

that the reaction rate equations (7.2)–

(7.10) have at least K stable limit cycles 

for all δ ∈ (0, δ0) and ε ∈ (0, ε0). 

Proof This follows directly from Lemma 5 

and Tikhonov’s theorem [22, 23]. 

The right-hand sides of reaction rate 

equations (7.2)–(7.10) only include 

quadratic terms. Therefore, there exists a 

CRN corresponding to reaction rate 

equations (7.2)– (7.10) which includes (at 

most) second-order reactions. We can 

obtain it by applying the construction in 

the proof of Lemma 1. The right-hand 

sides of equations (7.2) and (7.3) can be 

interpreted as the set of 16 K chemical 

reactions (compare with (5.12) for ODEs 

(5.1)–(5.2)) 

 

The right-hand side of equation (7.4) can 

be interpreted as the set of 14 chemical 

reactions for each i = 1, 2, . . . , K 

(compare with (5.8) for the right-hand 

side of ODE (5.3)) 

 

Consequently, reaction rate equations 

(7.2)–(7.4) correspond to 30 K chemical 

reactions in sets R s,∗ i and Rs i , i = 1, 2, . 

. . , K. This is already more that 29 K 

chemical reactions used in Theorem 1, 

because we did not combine two terms on 

the righthand sides into one reaction as we 

did in the set R∗ i (this is further discussed 

in equation (9.1) in Section 9). Moreover, 

there are additional chemical reactions 

corresponding to the dynamics of 

additional chemical species in equations 

(7.5)–(7.10). The right-hand sides of 

equations (7.5)–(7.8) can be interpreted as 

the set of 24 chemical reactions given as 

 

Finally, the right-hand sides of equations 

(7.9)-(7.10) can be interpreted as the set of 

12 chemical reactions for each i = 1, 2, . . . 

, K given by 

 

In summary, we conclude that the reaction 

rate equations (7.2)–(7.10) correspond to 

the CRN with N = 7K + 14 chemical 

species and 42 K + 24 chemical reactions 

given by 

 

Using Lemma 6, we deduce that the CRN 

(S, C, R) consisting of chemical species S 

given by (7.1) and chemical reactions R 

given by (7.16) is an example of a CRN 
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which satisfies Theorem 2. The 

corresponding set of reaction complexes C 

can be inferred from the provided lists of 

reactions R s,∗ i , Rs i , Rw and Rz i , for i 

= 1, 2, . . . , K, given by (7.12), (7.13) 

(7.14) and (7.15). 

8 Proof of Theorem 3 

Given an arbitrarily large integer K ∈ N, 

we will show that there exists a CRN with 

two chemical species such that its reaction 

rate equations have at least K stable limit 

cycles and the order of the chemical 

reactions is at most n(K) = 6K − 2. To do 

that, we start with the planar ODEs (3.1)–

(3.2) and renormalize time t to get a 

planar system with polynomial ODEs. 

Using an auxiliar function 

we define our new time variable τ by 

 

Then we obtain 

 

 

which is a planar ODE system with its 

right-hand side given as polynomials of 

degree n(K) − 1 = 6K − 3. Since we only 

rescaled the time, Figure 1(a) provides an 

illustrative dynamics of the ODE system 

(8.1)–(8.2) for K = 4. The illustrative 

trajectories have been calculated in Figure 

1(a) by solving ODEs (3.1)–(3.2) in time 

interval t ∈ [0, 100] and we can obtain the 

same result by solving ODEs (8.1)–(8.2) 

numerically in time interval τ ∈ [0, 10−9 

]. Applying x-factorable transformation to 

ODEs (8.1)–(8.2), we obtain 

 

 

which is a kinetic system of ODEs with 

polynomials of degree n(K) = 6K − 2 and 

which has K stable limit cycles. Solving 

for K, we obtain K = (n(K) + 2)/6, which 

establishes the lower bound (1.4) in 

Theorem 3. 

9. Discussion  

The main results of this paper have been 

formulated as Theorems 1, 2 and 3, which 

show that there exist CRNs with K stable 

limit cycles for any integer K ∈ N. The 

CRN presented in our proof of Theorem 1 

consisted of N(K) = K + 2 chemical 

species S given by (5.5) and M(K) = 29 K 

chemical reactions R (of at most seventh 

order) given by (5.13). The number of 

species and chemical reactions further 

increases in our proof of Theorem 2, 

where we restrict our investigation to 

CRNs with (at most) second-order 

kinetics. On the other hand, if we restrict 

to CRNs with only N = 2 chemical 

species, then the order of the chemical 

reactions increases with K as n(K) = 6K − 

2 in our proof of Theorem 3. 

An important question is whether we can 

further decrease N(K) (the number of 

chemical species) and M(K) (the number 

of chemical reactions) in Theorems 1 and 

2 and still obtain a CRN with K stable 

limit cycles. One possibility to decrease 

M(K) is to use one chemical reaction to 

interpret multiple terms on the right-hand 

sides of ODEs (5.1)–(5.3). We have 

already done this in the reaction set R∗ i 

given by (5.12) with the reaction 

 

Another possible direction to investigate 

is to consider more detailed stochastic 

description of CRNs, written as 

continuous time discrete space Markov 
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chains and simulated by the Gillespie 

algorithm [24]. Such simulations would 

help us to investigate how our parameters 

ai , bi , i = 1, 2, . . . , K, needs to be chosen 

that the system not only has the limit 

cycles of comparable size (as we 

visualized in Figure 3 in the ODE setting), 

but it also follows each of these limit 

cycles with a similar probability 

(comparable to 1/K). This could also be 

achieved by using the noise-control 

algorithm [25] for designing CRNs. This 

algorithm structurally modifies a given 

CRN under mass-action kinetics, in such a 

way that (i) controllable state-dependent 

noise is introduced into the stochastic 

dynamics, while (ii) the reaction rate 

equations are preserved. In particular, it 

could be used to introduce additional 

chemical reactions (which do not change 

the ODE dynamics), but lead to 

controllable noise-induced switching 

between different limit cycles. 
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