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Abstract 

As it is clear that corona-virus (COVID-19) has a direct danger on the humanity in the 

world, at the beginning of appearing this virus till seven months later that medicine science 

was unable to understand the behavior of this virus, in the study we focused on the Thrombosis 

for 73 patients that have covid-19 as a response variable and Age, Sodium, Blood pressure as 

factors. We aimed to study the effect of these factors on the thrombosis for covid-19 patients, 

in this situation for such a response of this type Bayesian regression neural network  model to 

predict thrombosis of the patients that have covid-19, the contribution in this study is using 

Bayesian regression neural network model to predict the thrombosis for the first time. Age, 

Sodium and Blood Pressure are capable of explaining 84% of Thrombosis. The Mse is 

0.1824136 and the AIC= 14.6867 with R2 = 0.84 which is mean that age, sodium and blood 

pressure are able to explain 84%. 
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Introduction  

The World Health Organization (WHO) has dubbed this disease coronavirus disease 

2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE-2) is mostly located in alveolar 

epithelium and endothelium, which has been demonstrated to be a binding site for 

coronaviruses. Thrombosis, an increasingly common consequence, is now understood to be 

caused mostly by activation of endothelial cells. It has been found that viral inclusion bodies 

can be found in a wide range of organs, from the lungs to the digestive tract [1]. Pro-

inflammatory "pyroptosis" in macrophages may be responsible for the immunological 

dysregulation that characterizes severe COVID-19 infection, with fast viral multiplication 

leading to enormous inflammatory mediator release. A higher D-dimer concentration is one of 

the most reliable indicators. There are a number of inflammatory events that can impact D-

dimer levels, however in patients with COVID-19 this almost certainly indicates intravascular 

embolism  [3, 4]. Studies in China have found a link between an elevated D-dimer level (>1000 

ngmL1) at admission and an increased risk of death while in the hospital [5]. Because of the 

lack of rigorous and extensive examination techniques, the real prevalence of thrombosis in 

patients with COVID-19 infection is unknown.  We want to measure the impact of Age, 

Sodium, Blood pressure on Thrombosis for those patients that suffer from covid-19. The 

purpose behind using Bayesian regression neural networks model is to get answers for the 

questions that are said does each of age, sodium, and blood pressure  has an effect on 

thrombosis and how much the amount of their effect. 
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Related Work 

By training neural networks to forecast the parameters from artificially created data, 

they investigated automating the process of creating summary statistics. Summary statistics are 

roughly posterior means of the parameters. The method creates summary statistics with 

moving-average modeling and model with little model-specific adjustment that are as accurate 

as or more accurate than justified summary statistics[1]. For flexible Bayesian regression, 

spline-based methods are straightforward to compute and explain. Using prior distributions that 

penalize complexity, we may simulate smooth bivariate interactions in an economical and 

seemingly new method. Choosing a model or averaging several models can be used to make 

predictions. In terms of computation, interpretation and predictive performance, the technique 

appears to perform well when applied to simulated and real datasets[2]. To get around this 

problem, he looks at Gaussian approximations, Markov chain Monte Carlo simulation routines, 

and a group of non-Gaussian but "deterministic" approximations known as variation 

approximations. Approximation theories such as Laplace's approximation and MCMC have 

been used in Bayesian work on neural networks and related models in the past. However, new 

approximation ideas such as variational approaches have also been developed.. As a result, 

statisticians are strongly urged to investigate the relevant journals and conference proceedings 

in computer science, as well as to play an active role in the development of the field of computer 

science [3]. 

Different economic traits were used in the development of a prediction equation for 

lifetime milk yield (LTMY). In India, 1210 Holstein Friesian crossbred dairy cattle were 

analyzed for their first lactation length, first peak yield, first lactation total milk yield, and three 

lactation total milk yield. The multiple linear regression model was used to compare feed-

forward back propagation algorithm variants. In terms of LTMY prediction, the BR algorithm 

outperformed the other algorithms by a wide margin. The milk yield could be predicted by the 

BR neural network model with an R2 of 71.18 [4]. 

Materials and Methiods 

Multiple Linear Regression Model 

Linear regression is the most statistical model used in practical 

applications because these types of models are linearly dependent on their unknown 

parameters. This can be fitted much more easily than the other models which 

response have a non-linear relationship with their unknown parameters and because 

the properties of statistical estimators are easier to explain [23]. 

The linear model of single regression can be shown as: 

Yi = B0 +B1Xi1 + B2Xi2 + . . . + Bp-1Xip-1+ εi     (1) Where   i = 0, 1, 2, n. 

Y: is the vector of response variable that distributed normally of n*1 dimensions. 

X: is matrix of explanatory variables of n*p-1 dimensions. 

B: is vector of unknown parameters of p-1*1 dimensions. 

ε: is vector of residual of n*1 dimensions. 

Neural Networks 

In order to understand NNs from a Bayesian perspective, it is necessary to review the 

basics of neural computation and to establish the notation that will be used throughout the 

section. The Multi-Layer Perceptron (MLP) network will be the primary focused [8]. 
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Convolutional networks, like MLPs, are based on the MLP, which serves as the foundation for 

NNs. The network's output can be represented as follows for this network's input x of 

dimension N1 [9]. 

ϕj = ∑ a(xi
N1
i=1 wij

1), (2) 

fk = ∑ g(ϕjwjk
2 )

N2
j=1  (3) 

Overlapping neural connections are denoted by the superscripted number after w in the 

parameters. The output of the hidden layer, which has dimensions N2, is depicted in Equation 

(2). After the N2 hidden layer, the kth output is a summing of all N2 outputs. There are numerous 

hidden layers that may be added to this model [11]. To keep things simple, this section does 

not provide a bias value for each layer. Each buried layer neuron (or node) is referred to in 

Equation (2)[10]. This is commonly referred to as an activation and it is stated a transformation 

followed by a non-linear element wise transformation ɸ(.). The sign(.) function was originally 

used as the activation function for perceptron’s, but this function is no longer used because its 

derivative is equal to zero[5]. In addition to the Sigmoid and Hyperbolic Tangent (TanH), the 

Rectified Linear Unit (ReLU) and the Leaky-ReLU are more advantageous activation 

functions. 

 
Figure (1) shows the structure of a neural networks. 

For binary classification or 1-D regression, a 1-layer neural network (NN) design is 

shown in Figure 1. Input states are summarized and activated at each node, which symbolizes 

a neuron or a state. 

A neuron's strength of connection is indicated by the weight of the arrows. derivatives 

that are able to reply. Explanation one of the Sigmoid function means that the network's output 

is comparable to a sum of logistic regression models. The identity function will be applied to 

the output g(.) in a regression model, and a Sigmoid will be used for binary classification. 

A matrix representation is a convenient tool for quickly and accurately implementing 

equations 2 and 3. The input vector is stacked in the data set as a column in X to obtain the 

result. The following is an example of how to execute forward propagation: 

Φ = a(XTW1) (4) 

F = g(ΦW2) (5) 

In spite of the fact that this matrix notation is more compact, the decision to adopt 

summation notation to express the network was not made lightly. In the aim that the summation 
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notation would make the connections between kernel and statistical theory, J(x,y) is a non-

convex cost function for NN learning in the frequents context, and it is minimized by the 

network weights to get the MLE or MAP estimate for a given set of values. After a model's 

output has been computed for the current parameter values, a partial derivative w.r.t. the 

parameters is obtained, and these partial derivatives are used to update each parameter in order 

to minimize the cost function's value. 

wt+i = wt − α
∂J(x,y)

∂wt
   (6) 

Equation 6 shows how back-propagation changes model parameters, with the learning 

rate and the subscripts indicating the training iteration. Using a chain rule, we may get partial 

derivatives for distinct parameters at different layers of the network. Thus, discontinuous non-

linearity like the ReLU is preferred for deep training NNs because its greater gradient helps 

prevent early layer gradients from disappearing during training. 

Bayesian Neural Networks 

For example, we suppose that weights have a genuine value that is only unknown and 

the data we've seen is regarded as a random variable in our frequenters setup above. This may 

appear to be at odds with our goals. Based on the information we have, we would like to find 

out what the weights of the unknown models. For statistical modeling, we have access to data 

in the form of the collected information. Because we have no idea what the initial weights will 

be, it seems sense to treat them like a random variable[6]. In a Bayesian statistical approach, 

the unidentified (or latent) parameters are viewed as random variables, and our goal is to infer 

a distribution of these parameters based on the training data. Unknown model weights are 

inferred from what we already know or can observe during the "learning" phase of BNNs. The 

Bayes Theorem is used to tackle the problem of inverse probability. We can't see the real 

distribution of the model's weights because they're latent variables [7]. For example, Bayes' 

Theorem allows us to define a distribution over these weights in terms observable probabilities, 

which results in a distribution of model parameters conditional on the data we have observed 

p(w|D). We can see the joint distribution p(w/D) between the weights and the data before 

training. According to the previous beliefs of p(w) and the choice of model likelihood p(D|w), 

this joint distribution is characterized. 

p(w, Ɗ) = p(Ɗ⎹ w) (7) 

The probability term in Equation 7 is determined by the network design and loss 

function. It is reasonable to assume that, for a 1-D homoscedastic regression issue, the 

likelihood is distributed normally, with p(w, Ɗ) = 𝒩(f w(Ɗ), σ2), as the mean value indicated 

by network output. All samples from D are considered to be identical in this model, which 

means that the probability may be expressed as a product of the contributions from each of the 

(n) distinct terms in the data set; however, this assumption is not always true. 

p(w, Ɗ) = ∏ 𝒩(f w(xi),N
i=1 σ2) (8) 

Previous to receiving any data, the distribution of weights should be described in the 

prior distribution. It is difficult to provide a relevant prior for NNs because of their black-box 

nature. Under the frequenters technique, many practical NNs are trained with low-magnitude 

weights centered around zero. A zero-mean Gaussian with a small variance, or a spike-slab 

prior with a zero center, can be used as a prior in the model to increase sparsity. The posterior 

distribution of the model weights is obtained by applying Bayes theory to the prior and 

likelihood distributions. 

π(ω⎹ Ɗ) =
p(ω)p(Ɗ⎹ω)

∫ p(ω)p(Ɗ⎹ω)dω
=

p(ω)p(Ɗ⎹ω)

p(Ɗ)
 (9) 
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The evidence or marginal likelihood is the denominator of the posterior distribution. 

The posterior distribution using normalized value, which is independent of the model's weights. 

We can make predictions about any quantity of interest based on the posterior distribution. 

According to the posterior distribution, we may make predictions. 

𝐸𝜋[𝑓] = ∫(𝜔)𝜋(𝜔⎹  Ɗ)𝑑𝜔 (10) 

There will be an expectation of this type for all predicted variables of interest. The 

predictive quantity is an expectation over the posterior, regardless of whether it is a predictive 

mean, variance, or interval. Only the function f(w) with expectation applied will be different. A 

weighted average of function f(w) may then be used to get the predict (w). Here, we see how 

marginalization (integration) across uncertain model weights drives Bayesian inference. We may 

learn about a model's generating process rather than an optimization method utilized in the 

frequents environment by employing this marginalization technique. These correct conditional 

probabilities may be accessed using this generative model. Many parameters, such as the noise 

variance for any previous values, were presumptively known in this description. Usually, this isn't 

the case, thus we have to deduce these unknown factors for ourselves. For these extra variables, we 

use the Bayesian framework to infer them as latent variables, give a prior distribution (or 

occasionally a hyper-prior) and then marginalize over them to arrive at the posterior, just as we do 

for the weights. Detailed instructions on how this may be applied to BNNs are available in [12,13]. 

The computation of the posterior (Equation 8) remains problematic for many models of interest. 

This is partly because of how the marginal likelihood was figured out. For non-conjugate models 

or those with non-linear latent variables (like NNs), this quantity can be computationally 

intractable. A quadrature approximation of this integral can be computationally challenging in 

high-dimensional models. As a result, it is necessary to approximate the posterior. The next sections 

go into depth on how BNNs can approximate Bayesian inference. 

Origin of Bayesian Neural Networks 

Based on the results of this and previous assessments [14], the first instance of what 

may be deemed a BNN [15] was built. The statistical interpretation of the loss functions utilized 

in this research emphasizes the statistical features of NNs. The MLE of a Gaussian may be 

found by minimizing a squared error term, as it was previously demonstrated. Bayes Theorem 

may be used to find an acceptable posterior by giving a prior over the weights of the network. 

This paper gives important insights into the Bayesian perspective of NNs, but no method for 

obtaining the marginal probability (evidence) is provided, which means that no practical 

methods of inference is proposed. Using the Laplace approximation, Denker and LeCun give 

a feasible method for executing approximate inference, but only provide basic experimental 

data [16]. A NN is a function that approximates a wide range of functions. In a single hidden 

layer network, every function may be represented as the number of parameters approaches 

infinite [16,17,18]. For the practical example, this means that as long as the model has enough 

trainable parameters, it can accurately imitative the finite training data set. The number of 

parameters in the NN or the degree of polynomial used increases the model complexity, leading 

to overfitting difficulties, even though it is possible to represent any function and even match 

the training data with a NN. An important question in neural network (NN) modeling is, "How 

complicated should I construct my model?" [20] MacKay shows how a Bayesian framework 

easily lends itself to the process of model construction and comparison of generic statistical 

models [19]. There are two types of inference discussed here: inference used to fit a model and 

inference used to judge a model's appropriateness. For the initial level of inference, Bayes' rule 

is commonly used to update the model parameters. 

𝑃(𝜔⎹ Ɗ, 𝐻) =
𝑃(Ɗ|𝜔, 𝐻𝑖)𝑃(𝜔|𝐻𝑖)

𝑃(Ɗ|𝐻𝑖)
, (11) 
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Where w is the set of parameters in the generic statistical model, D is the data and Hi 

represents the ith model used for this level of inference [7]. This is then described as, 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

Important to remember is that the normalizing constant in Equation 11 refers to data 

supporting a certain model as evidence hi As a result, approximations must be used when 

attempting to evaluate the posterior for most relevant models. Laplace approximation is 

employed in this study. Although it is necessary to compute the posterior over parameters, the 

primary goal of this study is to present techniques for evaluating the posterior over the model 

hypothesis. The design of the posterior over model is depicted as 

𝑃(𝐻𝑖|Ɗ) ∝ 𝑃(Ɗ|𝐻𝑖)𝑃(𝐻𝑖) (12) 

Model posterior equal to evidence multiplied by x, which is equivalent to Prior to the 

model, the data dependent component in Equation 12 functions as evidence for it. Most BNNs 

are unable to evaluate the posterior normalization constant, despite its positive interpretation as 

discussed before. The evidence's Laplace approximation, assuming a Gaussian distribution, is, 

P(Ɗ|Hi) = ∫ P(Ɗ|ω, Hi)P(ω|Hi)dω (13) 

≈ P(Ɗ|ωMAP, Hi)[P(ωMAP|Hi)Δω] (14) 

= P(Ɗ|ωMAP, Hi) [P(ωMAP|Hi)(2π)
k

2det−
1

2A] (15) 

= Best Likelihood Fit × Occam Factor 

As a single Riemann approximation to the model evidence, the peak of the evidence is 

represented by the highest likelihood fit, and Occam's factor is the width that is defined by the 

curvature around this peak. It is possible to calculate the Occam factor by dividing the posterior 

w range by the prior w0 range for the given model Hi. 

Occam Factor =  
Δω

Δω0
 (16) 

As a result, the Occam factor is defined as the ratio of change in plausible parameter 

space between the prior and posterior. Complex models capable of representing vast ranges of 

data will have greater Occam factors using this approach. A smaller set of data may be 

described with better accuracy, resulting in a lower Occam Factor, even while a simple model 

is less capable of capturing a complicated generative process. As a result, a model's complexity 

is naturally regularized. Models with excessive complexity have a tendency to have a broad 

posterior distribution, which leads to a high Occam factor and weak support for the model 

under consideration. An Occam factor decreases with a wider or less informative prior, which 

provides more insight into the Bayesian context of regularization. 

 
Figure (2) clarify the role of evidence in producing different model hypotheses. 
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The evidence plays a significant role in analyzing various model hypotheses, as seen in 

this graphic. It's easier to anticipate a narrow range of data using the basic model H1, but it has 

a lower likelihood of success than the more sophisticated model H2. According to [20,21]. This 

evidence paradigm necessitates the costly (and crucial) task of calculating the marginal 

likelihood. Many designs may not be viable to compare because of their high investment in 

estimating the marginal likelihood. A methodology for assessing solutions for BNNs, however, 

can be applied. Objective functions for most NN designs of relevance are non-convex and have 

several local minimums. The inference issue can be solved by any of the local minima. The 

evidence function for each local minimum is used by MacKay to compare the solutions [22]. 

There are no prohibitive computing requirements, therefore it is possible to evaluate the model 

complexity at each solution. 

Results and Discussion 

Data Description  

The data were collected by through interviewing and monitoring 73 patients by the 

researchers from Shahid Aso Hospital at Sulemani governorate, the dataset contains the 

variables which are Thrombosis as response variable and Age, Sodium and Blood pressure as 

explanatories variable. 

Application Steps of BRNN Model 

In order to designate the best architecture for an (BRNN) model that gives fits suitable 

model for the data under study, the following steps have been applied: 

First step 

After preparing the data set it has been read in R-Language software and then 

normalized it to be ready for applying BRNN model on it. 

Second step 

We prepared the program by installing the brnn package into the R software and then 

partitioning the data set into %70 for training and %15 for each of testing and validation. 

Third step 

After running the written program with seventy epochs for training the model,  the 

suitable network was [ 3 – 3 – 1] the below table shows that the best performance occurred at 

epoch70 for training dataset: 

Table(1) represents the occurring of best performance of the model 

Epoch Ed Ew gradient gamma alpha beta 

70 9.3031 161.9008 0.230639 11.1244 0.0344 23.1131 

In the above table Ed is the sum square`s of difference between observed data and 

predicted data for the training dataset, Ew is the sum of the squares of the bias and weights, 

gradient is the simply measure of the change in all weights with regard to the change in error , 

gamma is the effective number of parameters, α is the half of inverse of dispersion parameter 

for weights and biases and β is the standard error of the of the model. The Mse = 0.1824136 

and the AIC= 14.6867 with R2 = 0.84 which is mean that Age, Sodium and Blood Pressure are 

capable of explaining 84% of Thrombosis. 



  
 

Res Militaris, vol.13, n°1, Winter-Spring 2023 2084 

 

Table(2) demonstrate the performance measurements 

Datasets MSE AIC 

Training 0.1824136 14.6866924 

Testing 0.3131967 19.5516853 

Validation 0.21536764 16.1813211 

Table(3) shows the actual and the predicted values of training dataset 

Training  Training 

No. Actual predicted  No. Actual predicted 

1 -0.398797316 -0.0941  29 0.50597804 0.82106 

2 -0.355578555 -0.25949  30 -0.414205744 -0.97325 

3 -0.209950123 0.14208  31 0.048422902 -0.11429 

4 -0.341485481 -0.19789  32 6.719144634 5.38638 

5 0.048422902 0.66158  33 -0.411762944 -0.98818 

6 -0.350129233 -0.0762  34 -0.375308859 -0.55799 

7 -0.361215785 0.0014  35 2.867037718 2.14034 

8 -0.017814547 0.20232  36 -0.349095741 -0.69253 

9 -0.209950123 0.39517  37 -0.327392407 -0.84009 

10 -0.374369321 0.2463  38 -0.386113549 -0.69035 

11 2.038271008 1.86383  39 -0.346558988 -0.22208 

12 0.330284383 0.38383  40 -0.148880136 -0.34684 

13 0.424050303 0.86239  41 -0.363094862 0.25839 

14 -0.292629491 0.14608  42 -0.333499406 -0.36636 

15 -0.374369321 -0.00865  43 -0.092507839 0.30283 

16 0.001445988 0.44394  44 -0.375308859 -0.70537 

17 -0.355578555 -0.2478  45 -0.343646419 -0.75819 

18 -0.308601642 -0.14402  46 -0.252229345 -0.44196 

19 0.039027519 -0.49994  47 -0.33115056 -0.42197 

20 0.396052062 0.85751  48 -0.360276247 -0.69774 

21 -0.167670901 0.29807  49 -0.388274487 0.23312 

22 -0.327392407 -0.64622  50 0.026061891 -0.32532 

23 -0.33678779 -0.51382  51 0.518192038 0.83956 

24 -0.252229345 -0.00547  52 -0.405186176 -0.82973 

25 1.711405643 1.7679  53 -0.41608482 -0.11216 

26 0.612145865 0.37632  54 -0.308601642 -0.2071 

27 -0.374369321 -0.0187  55 -0.255987499 -0.06083 

28 1.927499446 1.44199     

Table(3) shows the actual and the predicted values of testing dataset 

Testing Dataset 

No. Actual Predicted 

1 -0.341485481 -0.24441 

2 0.17995826 -0.32937 

3 -0.148880136 -0.63921 

4 -0.350880864 -0.88336 

5 -0.30390395 -0.08429 

6 -0.337727328 -0.10934 

7 -0.364973938 -0.87878 

8 -0.409320145 -0.56906 

9 -0.327768223 0.29133 
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Sum to up table clarify the performance of postulated model for training, testing and 

validation dataset. 

Table(3) shows the actual and the predicted values of validation dataset 

Validation Dataset 

No. Actual Predicted 

1 -0.420716744 -0.86432 

2 -0.421083164 -0.603 

3 -0.415051328 -0.90619 

4 -0.278536417 -0.01866 

5 -0.271020111 -0.07813 

6 -0.416742497 -0.81411 

7 -0.412326667 -0.25955 

8 -0.404528499 -0.14568 

9 -0.374369321 0.12838 

 
Figure (3) shows the actual and the predicted values.  
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Figure(4) the 3D plot represents the  

Conclusion 

In this study we focused on the thrombosis for 73 patients that have covid-19 as a 

response variable and Age, Sodium, Blood pressure as factors. Bayesian regression neural 

network model was used to predict thrombosis for the first time. Age, Sodium and Blood 

Pressure are capable of explaining 84% of Thrombosis. The Mse is 0.1824136 and the AIC= 

14.6867 with R2 = 0.84 which is mean that age, sodium and blood pressure are able to explain 

84%. 
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