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Abstract 

Key Agreement protocol (KAP) is one of the fundamental cryptographic primitives 

after encryption and digital signature which enables two or more entities arrive at a common 

key, which may be later used for any cryptographic purpose. In this paper we proposed an 

authenticated tripartite key agreement protocol. The decomposition search problem plays the 

role of one way function. The five dimensional Discrete Heisenberg group is chosen as the 

platform group which is non abelian. The KAP proposed in this paper is authenticated by digital 

signature. Thus, the proposed KAP satisfies all the necessary security attributes required.   

 Keywords — Key agreement protocol, Decomposition search problem, Digital signature. 

Introduction 

The intrinsic difficulty of key establishment in large computer networks has led to the 

invention of Public key cryptography where one of the keys can be made public. There are two 

well-known categories of key establishment protocols; namely the key transport and key 

agreement. Key transport enables two communicating parties to obtain a common secret key 

by using pre- established secure communication channels between them and a trusted third 

party. Key agreement is preferred to key transport as in Key agreement all the communicating 

parties contribute information to arrive at a shared secret key. Thus KAP s are of central interest 

in security world. In this paper an authenticated tripartite KAP is proposed in which the 

Factorization search problem is chosen as the one way function which is from combinatorial 

group theory and to use the search problems as one way function a non abelian group plays the 

role of a platform group and in this paper the five dimensional discrete Heisenberg group is 

used. 
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The paper is organized as follows section 2 introduces the discrete Heisenberg group 

(DHG) and gives the computational facts, In section 3 the Decomposition search problem 

(DSP) and its intractability is discussed. In Section 4 a digital signature algorithm using DSP 

is presented and in section 5 a tripartite KAP authenticated by Digital signature is proposed, 

section 6 briefs the security analysis and section 7 concludes the paper. 

 The Five Dimensional Discrete Heisenberg Group 

ℋ = 𝑍𝑝
5  be the set of all elements of the form (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) and the binary 

operation in this set is defined as follows. 

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ⋅ (𝑦1, 𝑦2, 𝑦3, 𝑦, 𝑦5)   
= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3, 𝑥4 + 𝑦4, 𝑥5 + 𝑦5 + 𝑥1𝑦3 + 𝑥2𝑦4 

This operation satisfies the closure, associative properties and under this operation an 

identity element exists and each element possesses an inverse. But this operation is not 

commutative, thus this set constitutes a non abelian group which is infinite. 

This group is made finite as follows: 

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ⋅ (𝑦1, 𝑦2, 𝑦3, 𝑦, 𝑦5)   
= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3, 𝑥4 + 𝑦4, 𝑥5 + 𝑦5 + 𝑥1𝑦3 + 𝑥2𝑦4)𝑚𝑜𝑑 𝑝 

where 𝑝 is a prime number.  

Computational Facts: 

(i) Order of ℋ = 𝑍𝑝
5  is 𝑃5 

(ii) Identity element is 𝑒 = (0,0,0,0,0) 

(iii)Inverse:(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)−1 = (−𝑥1, −𝑥2, −𝑥3, −𝑥4, −𝑥5 + 𝑥1𝑥3 + 𝑥2𝑥4)𝑚𝑜𝑑𝑝 

(iv) (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)𝑛 = 

(𝑛𝑥1, 𝑛𝑥2, 𝑛𝑥3, 𝑛𝑥4, 𝑛𝑥5 + 𝑛(2)(𝑥1𝑥3 + 𝑥2𝑥4))𝑚𝑜𝑑𝑝 

(v)Generators of ℋ are (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0)(vi)[𝑎, 𝑏] = 𝑎 ⋅ 𝑏 ⋅ 𝑎−1 ⋅

𝑏−1 = (0,0,0,0, 𝑥1𝑦3 + 𝑥2𝑦4 − 𝑥3𝑦1 − 𝑥4𝑦2)𝑚𝑜𝑑 𝑝(vii)Thus any element of ℋ is expressed as 

follows:  (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (1,0,0,0,0)𝑥1 ⋅ (0,1,0,0,0)𝑥2  ⋅ (0,0,1,0,0)𝑥3 ⋅ (0,0,0,1,0)𝑥4 ⋅

[(1,0,0,0,0), (0,0,1,0,0)]𝑥5(viii) Order of any element is p, that is for any 𝑎, 𝑎𝑝 = 𝑒(𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦) 

(ix)Subgroups of DHG: The cyclic subgroup 𝐺1 =< 𝑒, 𝑎 > is of order 𝑃, the cyclic subgroup 

𝐺2 =< 𝑒, 𝑎, 𝑏 > is of order 𝑃2where 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎, the cyclic subgroup 𝐺3 =< 𝑒, 𝑎, 𝑏, 𝑐 >  

where 𝑎, 𝑏, 𝑐 commute with each other is of order 𝑃3, … the cyclic subgroup 𝐻𝑝−1 =<

𝑒, 𝑎1, 𝑎2, … , 𝑎𝑝−1 >  where the  generators commute with each other is of order 𝑃𝑃−1  

III. DECOMPOSITION SEARCH PROBLEM (DSP): 

Given a non- abelian group 𝐺 and two subgroups 𝐴, 𝐵 ≤ 𝐺 and two elements 𝑥, 𝑦 ∈
𝐺 find any two elements 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 that would satisfy 𝑎 ∙ 𝑥. 𝑏 = y provided atleast one such 

pair exist. 

DSP In Discrete Heisenberg Group: 

Given 𝑥 𝑎𝑛𝑑 𝑦 such that  y = 𝑎 ∙ 𝑥 ∙ 𝑏,   𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵   the DSP is to find  𝑎 and 𝑏  
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Intractability Of DSP: 

Let 𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), 𝑏 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5), 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5),     𝑦 =
(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) 

and 𝑦 = 𝑎 ∙ 𝑥 ∙ 𝑏 
(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) ⋅ (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ⋅ (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5) 

= (𝑎1 + 𝑥1 + 𝑏1,  𝑎2 + 𝑥2 + 𝑏2, 𝑎3 + 𝑥3 + 𝑏3, 𝑎4 + 𝑥4 + 𝑏4, 𝑎5 + 𝑥5 + 𝑏5 + 𝑎1𝑥3 + 𝑎2𝑥4 +
𝑎1𝑏3+𝑥1𝑏3+𝑎2𝑏4+𝑥2𝑏4) mod p 

𝑦1 = 𝑎1 + 𝑥1 + 𝑏1, 𝑦2 = 𝑎2 + 𝑥2 + 𝑏2 , 𝑦3 = 𝑎3 + 𝑥3 + 𝑏3 , 𝑦4 = 𝑎4 + 𝑥4 + 𝑏4 , 
𝑦5 = 𝑎5 + 𝑥5 + 𝑏5 + 𝑎1𝑥3 + 𝑎2𝑥4 + 𝑎1𝑏3+𝑥1𝑏3+𝑎2𝑏4+𝑥2𝑏4 

To find 𝑎 and 𝑏 one needs to solve the above set of equations. 

The possible ways to get 𝑥1, 𝑦1are listed as follows 

If 𝑦1 − 𝑥1 = 𝑝 − 1 

𝑎1 𝑝 − 1 0 𝑝 − 2 1 … (𝑝 − 1)/2 

𝑏1 0 𝑝 − 1 1 𝑝 − 2 … (𝑝 − 1)/2 

There are  𝑝 such possibilities available 

If 𝑦2 − 𝑥2 = 𝑝 − 2 

𝑎1 𝑝 − 2 0 … (𝑝 − 3)/2 (𝑝 − 1)/2 

𝑏1 0 𝑝 − 2 … (𝑝 − 1)/2 (𝑝 − 3)/2 

There are 𝑝 − 1 such possibilities available. 

Proceeding in similar way  

If 𝑦1 − 𝑥1 = 1 

𝑎1 0 1 

𝑏1 1 0 

There are 2 possibilities  

If 𝑦1 − 𝑥1 = 0 

𝑎1 0 1 𝑝 − 1 … (𝑝 + 1)/2 (𝑝 − 1)/2 

𝑏1 0 𝑝 − 1 1 … (𝑝 − 1)/2 (𝑝 + 1)/2 

There are p possibilities available 

Similar arguments arise in the case of the other 3pairs of elements namely,(𝑎2, 𝑏2) 

(𝑎3, 𝑏3) (𝑎4, 𝑏4) and  but when one tries to get (𝑎5, 𝑏5) from  

𝑦5 = 𝑎5 + 𝑥5 + 𝑏5 + 𝑎1𝑥3 + 𝑎2𝑥4 + 𝑎1𝑏3+𝑥1𝑏3+𝑎2𝑏4+𝑥2𝑏4  it is much more complicated.  

Thus to get the secret values 𝑥 and 𝑦 from one needs to search all the elements of the 

group when p is chosen large it may become hard to achieve. 
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Iv. Digital Signature Algorithm (Dsa) 

Digital signatures enable the recipient of the information to verify the authenticity of 

the information’s origin, and also verify that the information is intact. Thus, digital signatures 

provide authentication and data integrity. A digital signature also provides non-repudiation, 

which means that it prevents the sender from claiming that he or she did not actually send the 

information. These features are every bit as fundamental to cryptography as privacy, if not 

more. A digital signature serves the same purpose as a handwritten signature. However, a 

handwritten signature is easy to counterfeit. It consists of three algorithms namely Key 

Generation, Signature Generation and Signature Verification Algorithms 

INITIAL SET UP: 

Communicating Parties: A, B 

Platform group: Discrete Heisenberg Group 

One way function: Decomposition search problem 

Public information: Group element 𝑥1 ∈ 𝐺 and cyclic subgroups 𝐺1 =< e, 𝑔1, 𝑔2, 𝑔3 > and 

𝐺2 =< e, ℎ1, ℎ2, ℎ3 > where 𝑔i𝑔j = 𝑔j𝑔i and ℎiℎj = ℎjℎi for i = 1,2,3 and j = 1,2,3 

Cryptographic hash function: ℎ 

DIGITAL SIGNATURE ALGORITHM BETWEEN A AND B 

Key Generation: 

A chooses 𝛼1 ∈ 𝐺1, 𝛽1 ∈ 𝐺2 and computes 𝑆1 = 𝛼1𝑥1𝛽1and made it as public B chooses 𝛼2 ∈ 

𝐺1, 𝛽2 ∈ 𝐺2 and computes 𝑆2 = 𝛼2𝑥1𝛽2 and made it as public Signature Generation: 

1. A computes 𝑆Æ = 𝘢1S2𝛽1 

2. B computes 𝑆𝐵 = 𝛼2𝑆1𝛽2 

3. A chooses 𝛼3 ∈ 𝐺1, 𝛽3 ∈ 𝐺2, computes 𝑆3 = 𝛼3𝑆𝐵𝛽3    

    and sets 𝑆3 as public and (𝛼3, 𝛽3) as private key pair 

4. B chooses 𝛼4 ∈ 𝐺1, 𝛽4 ∈ 𝐺2, computes 𝑆4 = 𝛼4𝑆Æ𝛽4 ,   

    and sets 𝑆4 as public and ( 𝛼4, 𝛽4) as private key pair 

5. A computes 𝐾Æ = 𝛼3𝑆4𝛽3 

6. Let ‘𝑚1’ be the message to be sent by A to B and ‘h’   

    be a cryptographic hash function A computes  

    𝑦1 = ℎ (𝑚1) 

7. A signs the message 𝑚1 by computing  

    𝑆5 = 𝑆Æ𝑦1𝐾Æand sends (𝑆5 ,1) to B 

Verification Algorithm: 

On receiving (𝑠5, 𝑚1), B computes 𝑆𝐵
−1𝑆5𝐾𝐵

−1 = 𝑦1, also he computes ℎ(𝑚1), if  ℎ(𝑚1) = 𝑦1 

he accepts the message, otherwise he rejects the message 

Since 𝑆𝐴 = 𝑆𝐵 and 𝐾𝐴 = 𝐾𝐵 are the common keys Bob gets 𝑆𝐵
−1𝐾𝐴𝐾𝐵

−1 = 𝑆𝐵
−1𝑆𝐴𝑌1𝐾𝐴𝐾𝐵

−1 =
𝑦1 

Digital signature algorithm between B and C: 

Key generation 

B chooses 𝛼5 ∈ 𝐺1, 𝛽5 ∈ 𝐺2𝑎𝑛𝑑 𝑥2 ∈ 𝐺 and computes 𝑅1 = 𝛼5𝑥2𝛽5 

C chooses 𝛼6 ∈ 𝐺1, 𝛽6 ∈ 𝐺2 and computes 𝑅2 = 𝛼6𝑥2𝛽6 

Signature generation 

B computes 𝑅𝐵 = 𝛼5𝑅2𝛽5 , C computes 𝑅𝐶 = 𝛼6𝑅1𝛽6 

B chooses 𝛼7 ∈ 𝐺1, 𝛽7 ∈ 𝐺2 and computes 𝑅3 = 𝛼7𝑅𝐶𝛽7 and made it public C chooses 𝛼8 ∈ 𝐺1, 

𝛽8 ∈ 𝐺2 and computes 𝑅4 = 𝛼8𝑅𝐵𝛽8 and made it public A computes  

𝐿𝐵 = 𝛼7𝑅4𝛽7 and B computes 𝐿𝐶 = 𝛼8𝑅3𝛽8 . 

𝐿𝐵 = 𝐿𝐶 is their common key 
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Let 𝑚2 be the message to be communicated with C, B computes 𝑦2 = ℎ(𝑚2) and signs it by 

computing 

𝑅5 = 𝑅𝐵𝑦2 . B sends (𝑅5, 𝑚2) 

Verification: 

On receiving (𝑅5, 𝑚2) C verifies as follows. 

C computes 𝑇𝐶
−1𝑇𝐵𝑀𝐶

−1 and he gets𝑦3, also he computes ℎ(𝑚3) and accepts 𝑚3if ℎ(𝑚3) = 𝑦3 
Correctness: 

Since 𝑇𝐴 = 𝑇𝐶 and 𝑀𝐴 = 𝑀𝐶 are the common keys A gets 𝑇𝐶
−1𝑇𝐵𝑀𝐶

−1 = 𝑇𝐶
−1𝑇𝐵𝑦3𝑀𝐴𝑀𝐶

−1 = 𝑦3 
Digital Signature Algorithm for C and A  

A chooses 𝛼9 ∈ 𝐺1, 𝛽9 ∈ 𝐺2𝑎𝑛𝑑 𝑥3 ∈ 𝐺 and computes  

𝑇1 = 𝛼9𝑥3𝛽9 

C chooses 𝛼10 ∈ 𝐺1, 𝛽10 ∈ 𝐺2 and computes 𝑇2 = 𝛼10𝑥3𝛽10 

Signature generation: 

A computes 𝑇Æ = 𝛼9𝑇2𝛽9 

C computes 𝑇𝐶 = 𝛼10𝑅1𝛽10 

A chooses 𝛼11 ∈ 𝐺1, 𝛽11 ∈ 𝐺2 and computes 𝑇3 = 𝛼11𝑇𝐶𝛽11 and made it public 

C chooses 𝛼12 ∈ 𝐺1, 𝛽12 ∈ 𝐺2 and computes 𝑇4 = 𝛼12𝑇𝐴𝛽12 
A computes 𝑀𝐴 = 𝛼12𝑇4𝛽12 and computes 𝑀𝐶 = 𝛼13𝑇3𝛽13 
𝑀𝐴 = 𝑀𝐶  is their common key 

Let 𝑚3 be the message to be communicated with A, C computes 𝑦3 = ℎ(𝑚3) and signs it by 

computing 

𝑇5 = 𝑇𝐶𝑦2𝑀𝐶. B sends (𝑇5, 𝑚3) 

Verification: 

On receiving (𝑇5, 𝑚3) , A verifies as follows. 

C computes 𝑇𝐴
−1𝑇5𝑀𝐴

−1 and he gets 𝑦3, also he computes ℎ(𝑚3) and accepts 𝑚3 if ℎ(𝑚3) = 𝑦3 
Correctness:  

Since 𝑇𝐴 = 𝑇𝐶 and 𝑀𝐴 = 𝑀𝐶 are the common keys A gets 

𝑇𝐶
−1𝑇5𝑀𝐶

−1 = 𝑇𝐶
−1𝑇𝐵𝑦3𝑀𝐴𝑀𝐶

−1 = 𝑦3 

 V. Tripartite Key Agreement Protocol Authenticated By Digital Signature 

 Initial set up: 

 Communicating Parties: A, B and C 

Platform group: Five dimensional Discrete Heisenberg group (DHG) One way function: 

Decomposition search Problem (DSP) 

Public Information: group element z ∈ 𝐺 and cyclic subgroups 𝐺1 =< e, 𝑔1, 𝑔2, 𝑔3 > 

and 

𝐺2 =< e, ℎ1, ℎ2, ℎ3 > where 𝑔i𝑔j = 𝑔j𝑔i and ℎiℎj = ℎjℎ  for i = 1,2,3 and j = 1,2,3 

Public Information: group element z ∈  ܩ and cyclic subgroups 𝐺1 =< 𝑒, 𝑔1, 𝑔2, 𝑔3 > 

and 

𝐺2 =< 𝑒, ℎ1, ℎ2, ℎ3 > where 𝑔𝑖𝑔𝑗 = 𝑔𝑗𝑔𝑖 and ℎ𝑖ℎ𝑗 = ℎ𝑗ℎ𝑖 for 𝑖 = 1,2,3 𝑎𝑛𝑑 𝑗 = 1,2,3 

Round I: 

A chooses 𝑎1 ∈ 𝐺1, 𝑏1 ∈ 𝐺2 and ∈ 𝐺1 , computes 𝐾11 = 𝑎1𝑧𝑏1 and 𝑧1 = ℎ(𝐾11) 
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A signs his public key by using the signature as described in section 4, the signing keys for A 

( A to B) are 

𝑆𝐴𝑎𝑛𝑑 𝐾𝐴 he signs 𝐾11 by computing 𝑃11 = 𝑆𝐴𝑧1𝐾𝐴, A sends (𝑃11, 𝐾11) to B. 

B chooses 𝑎2 ∈ 𝐺1, 𝑏2 ∈ 𝐺2 , computes 𝐾12 = 𝑎2𝑧𝑏2 and 𝑧2 = ℎ(𝐾12).B sings his public key by 

using the signature generated by him,( stated in section 4) , the signing keys for B ( B 

to C) 𝑆Æ 𝑎𝑛𝑑 𝐾Æ, he signs 𝐾12 by computing 𝑃12 = 𝑅𝐵𝑧2𝐿𝐵 , A sends (𝑃12, 𝐾12) to C. 

 C chooses 𝑎3 ∈ 𝐺1, 𝑏3 ∈ 𝐺2 , computes 𝐾13 = 𝑎3𝑧𝑏3 and  

𝑧3 = ℎ(𝐾13). C sings his public key by using the signature generated by him,( stated in section 

4) , the signing keys for A ( C to A) 𝑇𝐶 𝑎𝑛𝑑 𝑀𝐶, he signs 𝐾13 by computing 𝑃13 = 𝑇𝐶 

𝑧3𝑀𝐶 , A sends (𝑃13, 𝐾13) to C. 

After receiving the public keys from the other entities A, B and C verifies the keys received by 

using the verification algorithm given in section 4 as follows. 

A verifies the public key from C by computing 𝑇𝐴
−1𝑃13𝑀𝐴

−1 = 𝑇𝐴
−1𝑇𝐶𝑧3𝑀𝐶𝑀𝐴

−1  also A 

computes ℎ(𝐾13) and if it is equal to 𝑧3 , he accepts the public key from C and proceeds 

for the further communications otherwise he rejects the public key and concludes that 

it is not from C , the procedure terminates. 

B verifies the public key from A by computing 𝑆𝐵
−1𝑃11𝐾𝐵

−1 = 𝑆𝐵
−1𝑆𝐴𝑧1𝐾𝐴𝐾𝐵

−1 = 𝑧1 also he 

computes ℎ(𝐾11) and if it is equal to 𝑧1 , he accepts the public key from A and proceeds 

for the further communications, otherwise he rejects the public key and concludes that 

it is not from A , the procedure terminates. 

C verifies the public key from B by computing 𝑅𝐶
−1𝑃12𝐿𝐶

−1 = 𝑅𝐶
−1𝑅𝐵𝑧2𝐿𝐵𝐾𝐵

−1 = 𝑧2 also he 

computes ℎ(𝐾12) and if it is equal 𝑧2, he accepts the public from A and proceeds for 

the further communications, otherwise he rejects the public key and concludes that it is 

not from B, the procedure terminates. 

Round II : At the end of Round I the communicting parties have the following informaotion 

with them ;  A posssesses 𝐾11 = 𝑎1𝑧𝑏1, B Posseses 𝐾12 = 𝑎2𝑧𝑏2 , C possesses 𝐾13 =
𝑎3𝑧𝑏3. 

A computes 𝐾21 = 𝑎1𝐾13𝑏1 and 𝑢1 = ℎ(𝐾21) signs kt by computing 𝑃21 = 𝑆𝐴 𝑢1𝐾𝐴 and sends  

(𝑃21, 𝑢1) to B. 

B computes 𝐾22 = 𝑎2𝐾11𝑏2 and 𝑢2 = ℎ(𝐾22) signs it by computig 𝑃22 = 𝑅𝐵𝑢2𝐿𝐵 and sends  

(𝑃22, 𝑢2) to C. 

C computes 𝐾23 = 𝑎2𝐾11𝑏2 and 𝑢3 = ℎ(𝐾23) signs it by computig 𝑃23 = 𝑇𝐶𝑢3𝑀𝐶  and sends  

(𝑃23, 𝑢3) to A. 

After receiving the public keys the communicating parties verify them by using the verification 

algorithm as described in section 4 as follows: 

A verifies the authenticity of 𝐾23 by computing 𝑇𝐴
−1𝑃23𝑀𝐴

−1 = 𝑇𝐴
−1𝑇𝐶𝑢3𝑀𝐶𝑀𝐴

−1 = 𝑢2 also he 

computes ℎ(𝐾23) and if it is equal to 𝑢3, he accepts the public key from C and proceeds 

for the further communications, otherwise he rejects the public key and concludes that 

it is not from C, the procedure terminates. 

B verifies the public key from A by computing 𝑆𝐵
−1𝑃21𝐾𝐵

−1 = 𝑆𝐵
−1𝑆𝐴𝑢1𝐾𝐴𝐾𝐵

−1 = 𝑧1 ; also he 

computes ℎ(𝐾21) and if it is equal to 𝑢1, he accepts the public key from A and proceeds 

for further communications, otherwise he rejects the public key and concludes that it is 

not from A, the procedure terminates. 

C verifies the public key from B , by computing 𝑅𝐶
−1𝑃22𝐿𝐶

−1 = 𝑅𝐶
−1𝑅𝐵𝑢2𝐿𝐵𝐿𝐶

−1 = 𝑢2, also he 

computes ℎ(𝐾22) and if it is equal to 𝑢2, he accepts the public key from A and proeeds 

for the further communications, otherwise he rejects the public key and concludes that 

it is not from B, the procedure terminates. 

At the end of Round II , A posseses 𝐾23 = 𝑎3𝐾11𝑏3, B posseses 𝐾21 = 𝑎1𝐾13𝑏1 and Cpossesses  

𝐾22 = 𝑎2𝐾11𝑏2. 
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They arrive at the common key by computing 𝐾𝐴 = 𝑎1𝐾23𝑏1, 𝐾𝐵 = 𝑎2𝐾11 𝑏2, 𝐾𝐶 =
𝑎3𝐾22𝑏3. 

The shared secret key is 𝐾𝐸𝑌 = 𝑎1𝑎2𝑎3𝑏3𝑏2𝑏1 

Security Analysis 

Security analysis for Digital signature algorithm: 

Data Forgery: 

Suppose an Eavesdropper E tries to send  (𝑚1)𝑓 instead of 𝑚1to B. Assume that E has 

sent(𝑚1)𝑓 to B. While verifying B finds that ℎ((𝑚1))𝑓 ≠ 𝑦1, thus he rejects the message. Thus 

the data forgery attack is not possible,thus he rejects the message. Thus the data forgery attack 

is not possible.3 

Signature Repudiation: 

Suppose A denies that he has not sent the message to B then B may hope that it may 

have come from an eavesdropper E. If the signature is not from A then B receives the signature 

as (𝑆3
′ , 𝑚). While verifying B computes 𝑆𝐵

−1𝑆3
′ 𝐾𝐵

−1 ≠ 𝑆𝐴𝑦𝐾𝐴𝐾𝐵
−1. Thus A cannot deny that the 

signature is not hi own. Thus signature repudiation is not possible. 

Existential Forgery Attack: 

Eavesdropper E tries to creat at least one message / signature pair. If E tries to sign a 

message m from A to B, he must know the signature of A. 

Suppose E signed the message m wih his own signature, he computes (𝑆3)𝑓 = 𝑆𝐴
′ 𝑦𝐾𝐴

′  

and sends ((𝑆3)𝑓 , 𝑚) as the signature to B. As A used the decompostion search problem to 

create his signature, it is hard to solve. E cannot get 𝑆3. E  cannot sign any message or get the 

signture. Thus Existental forgery attack is nnot possible. Thus the digital signature algorithm 

satisfies all the necessary security attirbutes. 

Security analysis for Key agreement protocol:  

      Perfect forward secrecy:  

A Protocol is said to have perfect forward secrecy if compromise of long- term keys 

does not compromise the past session keys.  

This KAP provides the perfect forward secrecy, since even if the long term keys such 

as𝑆𝐴, 𝑆𝐵, 𝑆𝐶 are compromised the adversary cannot find their secret shared key in the past 

session. The secret shared key is arrived with the help of the private keys of each entity as they 

are choosing different secret keys for each communication. Therefore even if the long time 

keys are disclosed at any point of communication that will not affect the session keys. Since 

the common key K= 𝑎1𝑎2𝑎3𝑧𝑏3𝑏2𝑏1 requires the session secret keys (𝑎1, 𝑏1) of A , (𝑎2, 𝑏2) 

of B and (𝑎3, 𝑏3) of C. Thus this protocol gives the perfect secrecy. 

Known Key secrecy: 

Each run of a key agreement protocol between two entities A and B should produce a 

unique secret key; such keys are called session keys. A protocol should still achieve its goal in 

the face of an adversary who has learned some other session keys. This KAP provides the 

known key secrecy as each session key is unique for each value of the session secret keys. For 

example if the adversary came to know about the common key of the three entities A, B and C 
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, that is 𝐾 = 𝑎1𝑎2𝑎3𝑏3𝑏2𝑏1which involves the session secret keys (𝑎1, 𝑏1) of A, (𝑎2, 𝑏2) of B 

and (𝑎3, 𝑏3) of C. For the next communication they are going to choose the secret keys different 

from these keys. Thus the other session keys cannot be found out by the adversary as it involves 

session secret keys of each entity. 

Key compromise impersonation: 

Suppose any one of the communicating parties say A’s long term private key is 

disclosed he may impersonate A to other entities, since it is precisely the identity of A. In this 

KAP the key compromise impersonation clearly impossible as the communicating parties sign 

their public keys by using the digital signature algorithm established between them each round. 

An adversary cannot take part in the communication between A,B and C. 

Unknown key share: An unknown key-share attack on an authenticated key agreement 

protocol is an attack whereby an entity A ends up believing it shares a key with another entity 

B and although this is in fact the case that B mistakenly believes the key is instead shared with 

an entity C ≠ A. This scenario is impossible in this KAP as the entities A, B and C are using 

the DSA to sign their public keys. If suppose an adversary pretends as A to B then he faces the 

difficulty of getting the signature of A and sign A’s public key. On verification B finds that it 

does not come from A and rejects the public key. Thus this KAP is secure against the unknown 

key share attack. 

Key Control: Neither entity should be able to force the session key to a preselected 

value. As the common shared key is arrived with the contribution of each entity, this case will 

never arise. Thus this KAP provides no key control attribute. 

VI. Computational Facts: 

7.1 Group multiplication: 
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ⋅ (𝑦1, 𝑦2, 𝑦3, 𝑦, 𝑦5)   

= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3, 𝑥4 + 𝑦4, 𝑥5 + 𝑦5 + 𝑥1𝑦3 + 𝑥2𝑦4)𝑚𝑜𝑑 𝑝 

One group multiplication requires 5 integer additions, 2 integer multiplications and one 

modular operation The number of group multiplications required for the entities are 

summarized below. 

Entity 
Round I Round II 

Total 
Key Signature Verification Key Signature Verification 

A 2 2 2 2 2 2 12 

B 2 2 2 2 2 2 12 

C 2 2 2 2 2 2 12 

7.2 Storage requirements:  

Entity A : Private Keys(𝑎1, 𝑏1) , Space requirement 20 bytes and 40 bytes in case of 

long integers Public keys:𝐾11, 𝐾21, space required is 20 bytes and 40 bytes in case of long 

integers. Thus each entity requires 20 bytes and 40 bytes in case of long integers for private as 

well as public keys. 
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Viii. Conclusion 

In this paper a tripartite key agreement protocol is proposed which satisfies all the 

security attributes of an authenticated key agreement protocol .The Key agreement protocol is 

made authenticated by applying the digital signature of the communicating parties. The Digital 

Signature algorithms between the communicating parties are pre-established and later they are 

used to authenticate the public keys of the parties. Thus the common shared key arrived by the 

parties become a secured one. After arriving at a common key the communicating parties may 

use it for any future cryptographic communications. The key agreement protocol proposed here 

may be used in network security and cloud computing where there is a need for common key 

for cloud client and server. 
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