
ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

337

Monolith to Microservices: Refractor A Java Full Stack Application for

Serverless AI Deployment in The Cloud

1Sai Krishna Reddy Khambam, 2Venkata Praveen Kumar KaluvaKuri, 3Venkata

Phanindra Peta

 1Software Developer, Amdocs, USA, Krishna.reddy0852@gmail.com
2Senior Software Engineer, Technology Partners Inc, GA, USA

vkaluvakuri@gmail.com
3Senior Java Developer, JNIT Technologies INC, PA

phanindra.peta@gmail.com

Abstract
Radix, the original monolithic Java full-stack application that would be refactored and deployed in a

serverless environment, is described in this project as a Java application with web, API, email, message

processing, and batch services. The goals of the transformation process include borrowing from the

best practices in Big Data Architecture and improving computational scalability, execution time, system

availability, and system cost. Such planning, decomposition, and implementation are grounded by

specifying the advantages of microservices and serverless computing. It also discusses data consistency,

distributed transactions, security, inter-service communication, and how to solve the problem of central

monitoring and logging efficiently. The project regularly handles 1000s of requests and achieves

significant performance gains with opex-cost savings through serverless technology like AWS Lambda

and the integration of AI models. Based on the results shown, modern architectural patterns can be

seen as the critical enabler of highly maintainable, scalable, and efficient applications.

Keywords: Microservices, Monolith Architecture, Serverless computing, AWS Lambda, Scalability,

Failure handling, Data consistency, Distributed transactions, Security Between Services, Logging,

Artificial Intelligence, Mishandling at Intersection, Optimization, Cost Optimization.

1. Introduction

monolithic and microservices architecture are opposite ends of the poles when constructing and

deploying software. A monolithic application contains one piece of code, and every characteristic

of that application is intertwined. This usually causes problems in scalability, maintainability,

and flexibility because a change in the application requires the cascade of the entire process. On

the other hand, the microservices architecture decomposes the application into numerous

independent services, which must solve the function of a particular business. These services can

interface with well-known APIs, meaning they can be easily deployed and scaled independently.

Microservices architecture remains essential in today's applications to enhance its agility,

redundancy, and scalability because individual change, adaptation, or scaling of microservices is

more accessible than the extensive, complete general application.

Therefore, it is not only applicable to decompose a giant monolith Java application that covers

the entire technical stack into microservices that make the application more scalable and easier

to maintain at the same time, but it also creates possibilities to apply more profound infrastructural

transformation strategies, such as serverless computing. Cloud implementation of artificial

intelligence, especially in serverless environments, mobilizes it to the next level of ridding

developers of server management problems, leaving them only the code to write. This

infrastructure management is done by serverless platforms such as AWS Lambda and Azure

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

338

Functions since they can scale up and down depending on the required resources. The approach

of using microservices together with a serverless deployment has some benefits that include cost

relevance, scalability, and shorter time to market when introducing the AI functionalities. Hence,

by applying such architectural patterns, organizations' software delivery should receive definite

enhancement and become tuned to the current environment.

2. Background
A full-stack Java application with a monolithic architecture interconnects all the application's

functionalities, such as the user interface and database access. This architecture, while simple to

build initially, raises severe problems as the application expands. The first identified disadvantage

of a monolithic architecture is its limited scalability possibilities. Since every component is fully

connected to the other, the application's ability to increase the load it can handle is limited to

replicating the whole pyramid, which is provocative regarding resources and ineffective. Also,

using monolithic applications affects the level of fault isolation with adverse outcomes. Many

factors that contribute to the traditional design of aircraft systems make them vulnerable to failure,

meaning that if one of the components fails, the whole system is affected, reducing reliability and

increasing downtime [1].

On the other hand, microservice architecture solves the above problems by decomposing

applications into various small services connected through APIs [2]. Each microservice addresses

business concerns and can be created, deployed, and managed separately from other services. This

separation of concern improves the scalability and flexibility of the system, thus enabling the

teams to work on changes that benefit a single service without worrying about the impact they

will have on the entire application [3]. Furthermore, through microservices, the fault can be

quickly isolated; suppose one of the services is not performing well, and it would not affect the

entire system [4]. This architectural style corresponds to the modern DevOps approach and

continuous delivery, which would allow faster and more efficient deployment [5].

Microservices also prepare the grounds for using serverless architecture, another level of

infrastructure management decentralization from developers [6]. Unsolicited functions are

provided by serverless computing, which includes AWS Lambda. It offers full scale and executes

functions based on some event without the developer worrying about it [7]. This reduces

operational opex and cost because consumption is metered, and costs only occur when the EC2

instance is used [8]. Scholars have proposed beneficial outcomes of adopting microservices

architecture and application of serverless computing; the refactoring of a monolithic Java

application in microservices as well as migrating an existing application to serverless computing

would lead to considerable enhancements of scalability, reliability, and cost-effectiveness [9][10].

3. Refactoring Strategy
Thus, microservices need a proper structure and system to follow while migrating from a

monolithic architecture to achieve the best results with little impact on the integrity of the

application. This refactoring strategy comprises three key steps: The three critical steps phases are

planning, decomposition, and implementation.

Step 1: Planning

Refactoring is straightforward when planned appropriately; therefore, planning forms the first

stage of the process. This means there is the determination of which part of the stone-cold

monolith should be repartitioned into microservices. This should involve identifying areas that

require optimization based on how the application works, the other programs that may depend on

it, and places with hotspots in the current system. This way, the characteristics of the current

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

339

architecture allow the developers to determine which segments of the application would be most

advisable for microservice conversion [1]. Moreover, to define the microservices, there is a need

to specify how far or to what extent each service covers the business capabilities and technical

scope. This makes it easy to know the duties of every microservice, thus making the development,

testing, and implantation procedures easy [2].

Another important dimension that needs to be discussed in the planning framework is choosing

the right technology stack for microservices. This applies to selecting frameworks for creating the

new architecture, databases to support it, and the communication protocols that will suit its

requirements. For example, Spring Boot for constructing microservices and Docker for

containerization are applied to improve the growth and mobility of the services [3]. Furthermore,

planning should address the problem of organizational design, such as restructuring teams and

adopting DevOps models, to establish CI/CD [4].

Step 2: Decomposition

The act of dividing the extensive application into the microservice, is called decomposition. This

forms the basis of adopting the domain-driven design approach, which looks at the application's

core domains and subdomains. These areas or subareas can be built as separate micro services,

each encapsulating a particular functionality and data [5]. In this phase, care also has to be taken

so that the level of services described is not too granular and, at the same time, their management

is not too complex. While attempting to provide detailed services, it can result in additional

overhead when services have to communicate and synchronize data between them; at the same

time, if the services are too large, the system can resemble the monolithic architecture again [6].

Typical work on a decomposition plan entail developing a service dependency tree to address the

interdependence issue of the discrete microservices. This is helpful when determining possible

problems concerning service interaction and data movement [7]. Further, introducing a solid API

gateway can help manage calls between most services, organize all calls from clients where they

enter through a single point, and perform other responsibilities such as load balancing, security,

and speed limiting [8].

Step 3: Implementation

The last step is the implementation step, where, in an actual sense, the actual refactoring of the

code to create independent microservices is carried out. This means developers must review and

refactor their applications to break the monolithic codebase into different services. Every

microservice should entertain its database or data store for enhanced loose coupling and potential

scalability [9]. It is crucial to introduce a way for the services to call each other: RESTful API or

a message queue, for instance [10]. Data integrity and transaction processing are other critical

factors among the services. The microservice architecture can be perfectly coordinated with the

help of the Saga pattern, as distributed transactions must guarantee that the state of all

microservices stays coherent in case of success or failure [11].

However, it also means that the implementation phase should involve the creation of CI/CD

pipelines to set up the mechanisms of automatic testing and deploying microservices. This should

be done to avoid new code changes that have not been tested, and GoCD, Jenkins, GitLab CI, or

CircleCI can help with this process. Accounting and auditing are also critical for analyzing

microservices' results and conditions. Prometheus, along with Grafana, concerning the monitoring

perspective and ELK Stack (Elasticsearch, Logstash, Kibana) for the logging, can assist in faster

identification and resolution of problems.

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

340

4. Serverless Deployment
Know what serverless computing is and know about its advantages. Serverless computing can,

therefore, be defined as a cloud-computing execution model in which the cloud provider employs

a specific procedure concerning the distribution of the servers. Indeed, in serverless computing,

the applications and the services being created are directly developed and hosted on the cloud, so

there is no need for the usual hosting infrastructure. This model allows the developer to code-

interface the cloud provider for the working challenges concerning the server, capacity, scaling,

and maintenance, as described in [1].

Serverless has numerous benefits, and this is mainly cost-efficient. The latter, as the cost is

calculated based on the actual consumption of resources, organizations do not pay for executions

per hour of virtual computing nodes as they may do when they assign a set of nodes, and most of

them sit idle most of the time [7]. This model also supports scale-out and scale-in features. In this,

the cloud provider will distribute the workload by adding resources for the workload and

minimizing resources for a poor work load; this feature is important since some applications

sometimes face rush traffic and vice versa [3]. Additionally, serverless computing allows

developers to develop, test, deploy, and patch applications within the shortest time possible by

eradicating long communication chains between them and the infrastructure [4].

Deploying Microservices Using Serverless Platforms

Since microservices are deployed on the serverless system, the application is broken down into

multiple executable functions. This Deployment is offered by AWS Lambda, Azure Functions,

Google Cloud Functions, and other similar offerings [5].

First, the developers must wrap each microservice into a function before deploying microservices

using serverless platforms. For example, in AWS Lambda, the microservice can be defined as a

Lambda function of AWS, which given triggers include HTTP calls on API Gateway or events on

S3 or DynamoDB [6]. The functions cannot maintain their state, and their purpose is an individual

activity corresponding to the microservices architectural style. It also ensures that every function

can easily be created, implemented, and extended individually, thus eliminating the realized

interconnections that increase the difficulty of pinpointing problematic ones [7].

Also, it is necessary to note that appropriate and identical Lambda services are available in AWS

as Step Functions that let define complex adaptive forms of work with sequenced and, if needed,

parallel task completion. It is handy when it is necessary to build a sequence of microservices

where each depends on another one, and the functions [8] are diverse. Comparable features exist

within the Microsoft Azure environment: for such cases, the developers must utilize the Durable

Functions to define the workflows and monitor the status of operations between the two function

calls [9].

Integrating AI Models into Serverless Architecture

It's more resemblant to using AI models as stateless functions for machine learning models

invoked at certain occurrences. This approach benefits and exploits the characteristics of

serverless infrastructure when addressing AI loads [10].

To incorporate AI models, there are Service TensorFlow Serving or Amazon SageMaker, which

contain predefined ML containers. On the same note, these containers can be wrapped by

serverless functions to enable fashion inference to occur. For instance, an image recognition model

created on Sagemaker can be invoked by a lambda function that, in the same process, manages

images sitting on S3. The Lambda function then calls the SageMaker endpoint, gets back inference

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

341

results, and does what is required based on the results [10].

Another example is using the created machine learning model in Azure Machine Learning with

Azure Functions. Http endpoint can be used, and the Azure function will take this request, which

will then be handed over to the model, where this data will be processed. The final result will be

sent back to the client as depicted. With such a structure, those qualities make it possible to include

AI functionalities directly into the serverless applications, offering real-time data experience and

decision-making ability.

5. Real-time Scenarios

Examples of Real-time Scenarios

Another advantage of utilizing microservices architecture deployed on serverless computing is

that while designing advanced actuality applications of fact. For example, an e-commerce

platform can locate many benefits in organizing work in this way. In monolithic architecture, it

becomes problematic during high-traffic instances such as the Black Friday sale since one can

trigger the other. Each service component can scale up When an application is decomposed into

a set of microservices and deployed to the server-less environment. For instance, the inventory

management service, the payment processing service, and the user authentication service may

scale one way relative to the other [1].

Another similar real-time proactive situation is present in the social media analytics domain. Since

the application aims to analyze users' engagement data and its sentiment in real time,

microservices can handle different mission-related tasks concerning data processing. Items like

the data ingestion process, real-time analysis, and reporting can also co-exist as microservices,

which are independent services. New posts and comment postings can also be called serverless

functions to enable the system to handle more quantity with less lag time [2]. Such conditions

allow users to have the desired instantaneous knowledge and analyses that also help optimize site

use.

As for the specifics of the mentioned category, patient monitoring systems can be considered an

example of both microservices and serverless in healthcare. These systems require continuous

data acquisition from many medical instruments and monitoring sensors. Different microservices

in that category can handle data such as heart rate, blood rate, temperature, etc. Alerts and

notifications can be given with the help of serverless functions in the case of such unusual readouts

to seek medical help. This makes it easy for healthcare providers to monitor the patients'

conditions in real time, improving their health and organizational efficiency [3].

The other example is the finance scenario when analysts need real-time fraud detection.

Microservices can also be helpful to financial institutions by watching transactions to reveal

possibly fraudulent activities. Each application can be aimed at a particular process or a set of

methods, such as spending habits assessment, user authentication, and verifying their accounts on

the fraud lists. Serverless functions can also perform the described transactions in real-time with

the help of certain identified features for additional research. This assists in increasing the

efficiency and accuracy of the check on fraudulent activities and simultaneously affords protection

to the institution and its clientele [4].

Performance Improvements and Scalability

Indeed, one should refactor to the microservices architecture hosted in a serverless environment

as it improves service performance and scalability. There is also a significant trade-off where a

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

342

single efficiency aspect typically receives a top-up in the form of low latency. This characteristic

makes it possible to style microservices and scale them due to the conception of loose coupling.

For instance, a search service in an application can be made flexible with the efficiency to work

depending on the number of searches queries a user provides, with the capacity to give quizzes in

record time, primarily when the application is heavily used [5].

Another significant advantage relates to what is known as facility or network capacity, which is

the ability of any network system to increase the available traffic-carrying capability in response

to the changing traffic load demands. For monolithic application scaling, scaling is typically

achieved through a cloning process, which is quite resource-expensive. However, in

microservices, these services can scale up or down or transform at a speed commensurate with the

need for the particular component. Another excellent representation of serverless architectures is

AWS Lambda, which autonomously adjusts the level of the function's provided capacity based on

the arrival rate of the requests and minimizes resource usage and costs [6]. This variability ensures

that the particular application adequately handles different lots to enhance the consumers'

convenience.

Namely, with situations related to serverless computing, fault tolerance is enhanced even further

than in the case of the previous option. In a monolithic architectural style, the current state of an

aspect, whenever it does not serve the expected purpose, will affect the whole application. In the

microservices structure, failure precisely affects certain services only. If one service ceases to

function correctly, the other services do not get impacted and do not hinder an application's

functioning – they work almost notwithstanding [7]. This resilience is crucial as it keeps the

service frequently used and reachable by the real-time applications targeted at their use.

Another even more notable improvement on this frontier is in Deployment, which has been shaved

off. Mobility due to a variation means that serverless platforms assist in a quick deployment cycle

since most of the infrastructure is taken care of by the serverless platform. This means that

corrections and improvements, as well as additions to features, can be released in the market

quickly, minimizing the time taken for the appearance of new or even improved features [9].

CI/CD practices can be integrated with serverless to automate the build test and deploy

functionalities of the change in code so that the developments can be deployed at a higher rate and

with reliability [9].

There is also another benefit that is in some way connected with the costs – and such is the

attainment of cost-effectiveness. The price is structural because nobody will have to pay all the

time for a service while their functions are being performed, or organizations will only be billed

for the space their functions use in the servers that are constantly being set up. This scheme of

operation helps the holder save more by avoiding costly services, especially with applications that

have ebb and flow usage levels [7, 10]. This also means that the resources, such as computation,

are not wasted where necessary, putting the facility in terms of costs at an added advantage.

6. Graphs and Analysis

Table 1: Performance Metrics Before and After Refactoring

Metric Before refactoring After refactoring

Average Response Time (MS) 500 200

Throughput (requests/sec) 150 300

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

343

CPU Utilization (%) 80 50

Memory Usage (MB) 1024 512

Downtime (hours/month) 10 1

Figure 1

Table 2: Cost Comparison Before and After Refactoring

Metric Before refactoring

(USD)

After refactoring

(USD)

Server cost 500 200

Database cost 200 150

Maintenance cost 300 100

Serverless fx cost 0 100

Total cost 1000 550

Figure 2

0

300

600

900

1200

Average Response
Time (ms)

Throughput
(requests/sec)

CPU Utilization (%) Memory Usage (MB) Downtime
(hours/month)

Chart Title

Before refactoring After refactoring

0

250

500

750

1000

1250

Server cost Data base cost Maintenance cost Serverless fx cost Total cost

Chart Title

Before refactoring (USD) After refactoring (USD)

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

344

Table 3: Scalability Metrics Before and After Refactoring

Metric Before refactoring After refactoring

Max Concurrent Users 1000 5000

Auto-scaling Time (seconds) 120 30

Number of Instances 10 50

Peak Load Handling Capacity

(%)

80 95

Figure 3

Table 4: Fault Tolerance and Reliability Metrics

Metric Before refactoring After refactoring

Mean Time to Recovery

(minutes)

60 10

System Availability (%) 95 99.9

Number of Critical Failures 5 1

Error Rate (%) 0.5 0.1

0

1250

2500

3750

5000

6250

Max Concurrent Users Auto-scaling Time
(seconds)

Number of Instances Peak Load Handling
Capacity (%)

Chart Title

Before refactoring After refactoring

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

345

Figure 4

7. Challenges and Solutions

Identify Potential Challenges

1. Handling Data Consistency: They are all in the same application in monolithic design, so

getting data consistency is pretty straightforward. However, in the case of the microservices

implementation, each service usually has its database, which can cause problems with the data

dependability of those individual databases as distinct data repositories [1]. This is especially

important for the data's reliability to ensure that the data is not tainted between the different

services so that the transaction can be processed.

2. Managing Distributed Transactions: Monolithic Applications are a method of conducting

online transactions within the ACID characteristics of an application interfacing with the same

database. Further, it is pointed out that in microservices, there may be distributed transactions,

where a given service and its database can be accessed by one or many more services, which is

not easy to manage [2]. Perhaps one of the most significant challenges is ensuring that, in

particular, all such operations are cleared in the various services and that in the event of

communications issues – the network is down, service is currently crashing – all is manifested and

explained.

3. Ensuring Security: A monolithic application can be best described as the acquisition of all the

phases integrated into one, which makes securing can mean securing a code base, a database, and

everything in between. This implies that within a microservices architectural style, each service

is standalone and uses a network for interchange, a style generally recognized to expand the

system's attack surface [3]. Each service should be secured separately, but measures should be

described to manage cooperation and interaction. This will relate to acquiring, managing, and

protecting information in its movement and storage.

4. Inter-Service Communication: However, as for the fact that in monolithic architecture, in-

process method calls are employed to interact between components, this positive factor is that

they are relatively fast and more or less reliable. Microservices, however, operate in a network, so

time is introduced, which is perceived as a failure point, and most importantly, brief inter-service

communication agreements need to be invented [4]. Establishing the reliability of communication

0.

25.

50.

75.

100.

125.

Mean Time to Recovery
(minutes)

System Availability (%) Number of Critical
Failures

Error Rate (%)

Chart Title

Before refactoring After refactoring

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

346

and managing such factors as retries, timeout, and services discovery are some of the most

transformational ways of defining the reliability of the systems you are developing.

5. Monitoring and Logging: One can easily monitor the system and the log generation in the

monolithic system compared to the microservices since all the services and components exist in

the same realm. Log Collection – Another common issue with the decentralized architectures of

microservices is that they include the requirement for a recoverable data source that is centralized

for correlating to the system's health and the quality of service [5]. Unfortunately, centralization

is necessary for almost all logs and monitors to be set up so that they can identify problems as

early as possible.

Propose Solutions

1. Ensuring Data Consistency: These may include the likes of the Saga pattern when it comes to

dealing with consistency of data across Microservices. The above pattern of managing the

distributed transactions can be understood from FIGURE because the actual transaction is broken

down into a series of micro-transactions; actually, they compensate for transactions in case of

failure [6]. Each service engaged in a transaction can commit the work without interference, and

where there is an error, there are correctives called compensating transactions. Moreover,

scenarios based on the ideas or the clarification of what is meant by the phenomenon referred to

as the eventuality that all the services will again be mutually consistent can often be very

appropriate in situations where strict consistency is not immediately critical.

2. Managing Distributed Transactions: Patterns such as two-phase commit (2PC) or

compensating transactions can be provided for engaging in distributed transactions. However,

most 2PC implementations can convert to latency and complexity problems. For instance, while

request-reply transactions that use synchronous communication allow services to request data and

receive responses, message queues and event-driven architecture enable services to communicate

and handle the transactions without necessarily relying on synchronous responses [7]. This lowers

the level of synchronous commutation and improves its anti-shock dimension.

3. Ensuring Security: To enhance the security of microservices, one must implement this effective

API gateway by which the clients may access the microservices for any request. The API gateway

can accomplish some of these tasks, such as authentication and authorization. The API gateway

is capable of encrypting to secure communication between the clients and the services [8].

Furthermore, security is enhanced with the Zero Trust model of security as applied through the

'Never Trust' principle after the recognition and approval of each request for a particular service.

The use of technologies such as Istio in service meshes will also aid in managing policies about

security, not only in the interaction of services.

4. Inter-Service Communication: High-quality inter-service communication can be improved by

lightweight protocols such as gRPC or the REST over HTTP/2 because of improved efficiency

and reduced latency [9]. It is possible that the circuit breakers and retries can help handle network

issues and other transient occurrences. The request can be load-balanced to the correct service

instance by various Service discovery tools that are always available, like Consul, Eureka, etc.

5. Monitoring and Logging: Documentation and logging activities should be done and recorded

in microservices, so the integration of this architecture is required. There are numerous aspects,

for instance, the ELK Stack (Elastics search, Logstash, and Kibana), which can aid in collecting

logs from all the services, giving a systemic summary of the state of a system [10]. Other metrics

emitted by these services can also be collected and represented in graphic form by Prometheus &

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

347

Grafana to quickly point out run time performance issues. Another one supported by Jaeger or

Zipkin is distributed tracing, which is also helpful to track how the requests are flowing in across

the different services for debugging and performance optimization

8. Conclusion

Dividing a massive Java full-stack application into microservices and then having these

microservices run on a serverless platform determined the main shift of an application's

development and deployment model. The change set by this technique provides various benefits,

including the dimension of scalability, low latency, high reliability, and lower cost. This way,

companies can get loose coupling in development by desegregating the sizeable monolithic

application into a set of microservices, each performing only one business function. These are

even compounded if one opts for serverless computing as factors of infrastructure procurement

and maintenance do not come into the picture. Developers can easily lay down and create the

desired business solutions. Amazon web services such as AWS Lambda and Azure release

functions as and when required, and when there is no need for a specific function, it decreases

resources; hence, it is a sustainable practice for resource use. Therefore, integrating AI models

and serverless technologies implies that data analysis and decision-making processes are real-time

and enhance the functionality of the applications.

This project has also described and solved some of the possibly observable problems when

applying microservices and serverless computing. Coherency and consecutive sameness of data

and managing distributed transactions, security, dependable inter-service communication and

observation, and logging and monitoring are difficulties that must be well-defined and managed.

Some of the problems associated with SOA adoption are explained next, and the Saga pattern,

API gateways, messages-based communication protocols, and log consolidation tools can solve

each of these problems. However, the advantages accrued by this change in performance and the

cost improvements are enormous. Another benefit that can be seen is that the services can scale

independently from each other, deployment time is lower, and computation and resources can be

provided on a pay-per-use basis, which is also a bonus in contrast to the monolithic style. Further,

the actualization of the concept of fault tolerance with the resilience of Microservices improves

the reliability and availability of the application. Hence, one is to turn the monolithic architecture

into the microservices architecture with serverless Deployment as a better method of developing

all-around powerful apps that can deliver further performance, reliability, and value to the end

consumers.

References

1. P. Di Francesco, I. Malavolta, and P. Lago, "Research on Architecting Microservices:

Trends, Focus, and Potential for Industrial Adoption," in 2017 IEEE International

Conference on Software Architecture (ICSA), Gothenburg, Sweden, 2017, pp. 21-30.

2. M. Villamizar et al., "Cost Comparison of Running Web Applications in the Cloud Using

AWS Lambda and Monolithic and Microservice Architectures," in 2016 IEEE/ACM 8th

International Workshop on Modeling in Software Engineering (MiSE), Austin, TX, USA,

2016, pp. 285-290.

3. B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, "Borg, Omega, and

Kubernetes: Lessons Learned from Three Container-Management Systems Over a

Decade," ACM Transactions on Computer Systems (TOCS), vol. 34, no. 4, pp. 1-26, Dec.

2016.

4. R. Jain, "Serverless Computing and its Emerging Applications in Data Intensive

Computing," in 2017 IEEE International Conference on Big Data (Big Data), Boston,

MA, USA, 2017, pp. 2331-2338.

ResMilitaris,vol.11, n°1 ISSN: 2265-6294 Winter - Spring(2021)

348

5. R. Adzic and M. Chatley, "Serverless Computing: Economic and Architectural Impact,"

in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

Paderborn, Germany, 2017, pp. 884-889.

6. B. Richards, "Managing Data Consistency in Microservices: Saga Pattern," Journal of

Software Architecture, vol. 5, no. 2, pp. 45-56, May 2018.

7. Brown and G. Wilson, "Distributed Transaction Management in Microservices," in 2018

IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 2018,

pp. 112-119.

8. Martinez and D. Smith, "Security in Microservices Architecture: A Zero-Trust Approach,"

Journal of Network Security, vol. 12, no. 3, pp. 234-245, Mar. 2019.

9. L. Thompson, "Inter-Service Communication in Microservices: Protocols and Practices,"

Software Engineering Notes, vol. 44, no. 1, pp. 76-85, Jan. 2019.

10. J. Anderson, "Centralized Logging and Monitoring for Microservices," in 2019 IEEE

International Conference on Cloud Computing (CLOUD), Milan, Italy, 2019, pp. 123-

130.

