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Abstract 

Water activity (aw) of dehydrated pineapple is one of the most important quality factors 

that must be determined in the routine operation of a factory. A non-destructive technique for 

detecting aw of dehydrated pineapples in the factory is required. Near infrared hyperspectral 

imaging (NIR-HSI) that has previously been shown to be a possible non-destructive, rapid, 

accurate and robust method was used in this study. The model for aw was established using 

partial least square regression (PLSR). Spectra in the wavelength of 935–1720 nm of samples 

were measured by using NIR-HSI and preprocessing methods tested before model 

establishment. The accuracy of the prediction model for aw gave a correlation coefficient of 

prediction (Rp) of 0.72 and root mean square error of prediction (RMSEP) of 0.0054. Results 

showed that NIR-HSI could possibly be used for determining aw of dehydrated pineapple non-

destructively and could be incorporated into the production process for online grading in 

dehydration factories. 

Index Terms—fruit, spectra, model, quality, non-destructive 

Introduction 

Pineapples (Ananas comosus L.) are grown in both tropical and subtropical climates 

and they rank third among non-citrus fruits in production; following bananas and mangoes [1]. 

Global pineapple production has progressively increased by over 3% annually over the past 9 

years, reaching approximately 27.9 million tonnes in 2019. The major producers are Brazil, 

Philippines, Thailand, Costa Rica, Indonesia, India and China [2]. Pineapples are marketed in 

various forms including fresh fruit as well as being processed into juice, canned slices or pieces, 

fresh-cut [3] and lately as dehydrated snacks [4].  
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The quality of any processed fruit depends on the quality of the fresh fruit to be 

processed as well as the conditions during processing and an interaction of the two. Batches of 

fruit delivered to the factory may vary and processing may require modifications in order to 

maintain optimum quality. Therefore, factories apply constant monitoring of random samples 

as the fruit arrive as well as monitoring throughout processing. However, monitoring is 

inconvenient, destructive, time consuming and labor intensive, therefore a non-destructive, 

quick procedure would speed the process, be more cost-effective and should be more reliable 

since every fruit is monitored not just a random sample [5], [6]. For consistent production of 

high-quality products from fruit, which constantly vary, any method that can help to achieve 

this would be very valuable to the industry. 

NIR-HSI has previously been shown to be a technique that can be used for non-

destructive and non-contact analysis of foods. The use of NIR-HSI enables the capture of both 

spatial and spectral data for determining product quality for example in: eggs [7], limes [8], 

cakes [9], tapioca starch [10], pulse flour [11], infant formula [12], chrysanthemum bud tea 

(hangbaiju) [13], black tea [14] and durian pulp [15]. The preferred method is to use a 

chemometrics and PLSR to extract significant data in order to develop a linear model for the 

prediction of dependent variables from a large number of independent variables [16]. 

Therefore, NIR-HSI was selected for testing the prediction of water activity of dehydrated 

pineapples in this research, since it is a feasible analytical method that should fulfill these 

requirements, because it is non-destructive and non-contact and enables for the capture of both 

spatial and spectral data for determining product quality.  

Materials and methods  

Dehydrated Pineapple Preparation 

Different batches of commercial sliced dehydrated pineapple were obtained from a 

dehydration fruit factory in Kanchanaburi Province of Thailand. Each sample was visually 

inspected to ensure they were of good appearance and without any visible flaws. 

Spectral data  

Each dehydrated pineapple slice was scanned using a NIR-HSI system. The system 

consisted of a push-broom-laboratory-based sisu CHEMA system with a hyperspectral camera 

(Specim Fx17, Spectral Imaging Ltd, Oulu, Finland) in a reflectance mode in the wavelength 

of 935–1720 nm, which consisted of 224 spectral bands. Each sample was positioned on the 

scanner tray and passed through the camera's field of view with a position speed 20 mm/s and 

a scanning speed at 15 mm/s, using a stepper motor. The camera’s field was illuminated by 

lamps on both the left and right sides of the sample. A white reference image was measured 

using a Spectralon bar and a black reference image was measured while the shutter was closed 

(Figure 1).  

 
Figure 1. Schematic of the NIR-HSI system. 
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Water activity 

For the determination of water activity (aw) the AOAC method [13] using a water 

activity meter (4TE, Aqualab©, USA) was employed. The water activity meter was first 

calibrated using the calibration standard (distilled water), which showed, as predicted, the aw 

of distilled water of 1.000 ±0.003. Determination of aw was done by weighing 1 g of sample, 

placing the sample in a water activity measuring cup and placing the cup containing the sample 

the water activity meter. The value of aw was displayed in the water activity meter and it 

sounded "beep" when the measurement was done. 

Data Analysis 

The NIR-HSI system's scanning outputs covered both the sample and background 

spectra. Principal component analysis (PCA) was used to remove the background data, leaving 

only the region of interest (ROI), which was only the sample spectra. ROI spectra of each 

sample were then averaged and utilized in the study. The acquired aw was defined as the 

dependent variables, whereas the sample spectra were defined as the independent variables. 

This information was used to create a calibration model. Samples were divided into calibration 

and prediction groups. To select the optimal calibration model, spectral pretreatments included 

Savitzky-Golay smoothing, first and second derivatives, standard normal variate (SNV), 

multiplicative scatter correction (MSC) and combinations were performed and evaluated on 

each sample in the calibration group. PLSR was used to build the calibration models for aw 

from spectra that were preprocessed using spectral pretreatments and then selected for the best 

calibration model in the optimal conditions by considering lowest root mean square error of 

cross validation (RMSECV), high correlation coefficient of cross validation (Rcv) and the 

lowest number, and number of latent variables (LV). The best calibration model for aw was 

validated by samples in the calibration group in order to determine the model's performance by 

considering the root mean square of calibration (RMSEC) and the correlation coefficient of 

calibration (Rc). The best calibration model for aw were also tested using the samples in the 

prediction group to evaluate the accuracy by considering RMSEP and Rp. The robustness of 

the calibration model was determined by the similarity of RMSEC and RMSEP. The data was 

statistically analysed using the Unscrambler X Version 10.5.1 (CAMO, Osla, Norway) and 

UmBio Evince HSI analysis software (Prediktera Evince, version 2.7.5, Sweden). 

Results and Disscussions 

The feature of the average ROI spectra from all the samples in the wavelength range of 

935–1720 nm that were used for establishing the calibration model for aw was shown in Figure 

2. Samples based on aw were divided into two groups of low and high levels. Also, the spectra 

of each group were averaged and plotted (Figure 3), indicating that the average spectra of high 

levels of aw had a larger absorbance value than lower levels. That clearly showed that higher 

absorbance occurred in samples with higher aw was due to the influence of water in samples, 

that is aw influenced absorbance spectra. 

In order to reduce noise and detect and eliminate overlapping peaks, the second 

derivative spectral pretreatment was investigated (Figure 4). The averaged second derivative 

spectra showed distinct peaks in the negative bands about 964, 1154, 1342 and 1460 nm, which 

has previously been shown to be aligned to the water absorption peak [14], showing that water 

was the major constituent in dehydrated pineapples. In order to develop the calibration model, 

the dehydrated pineapple samples were divided into the calibration and the prediction groups 

(Table 1), with the samples for aw in the prediction group were in the calibration group's range, 

with a close standard deviation between groups. 
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Figure 2. Average ROI spectra of dehydrated pineapples. 

 
Figure 3. Averaged spectra of low and high aw of dehydrated pineapples. 

 
Figure 4. Average second derivative spectra of dehydrated pineapples. 

Although several spectral pretreatments applied to the spectra of samples in order to 

minimize noise and reduce the shift in the base line, it was shown that its original spectra gave 

the best calibration model (Table 2), therefore the original spectra were therefore utilized to 

predict aw of dehydrated pineapples in this study. The calibration model was then tested in 

order to determine the accuracy by the samples of the prediction group for aw. The calibration 

model was shown to give acceptable results for predicting aw (Rp= 0.72, RMSEP= 0.0054) 

(Table 3). The calibration model also achieved good robustness as indicated by the values of 

RMSEC and RMSEP, which were close. The scatter plots for aw (Figure 5) showed that the 

calibration model was validated by the samples in the calibration group and illustrates the 

accuracy of the calibration model for aw when it was tested using the samples in the prediction 

group (Figure 6). This effect indicates that using NIR-HSI for predicting aw of dehydrated 
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pineapples gave acceptable accuracy and could be used in a non-destructive online grading 

system for quality control in a pineapple fruit dehydration factory. 

Table 1. a of dehydrated pineapples in the calibration and the prediction group 

 
aw 

Calibration group Prediction group 

Sample 90 40 

Range 0.567 – 0.608 0.569 – 0.604 

Average 0.588 0.587 

Standard deviation 0.008 0.008 

Table 2. Spectral pretreatments for PLSR models for aw of dehydrated pineapples 

Pretreatments 

aw 

Latent variable 
Correlation coefficient 

of cross validation 

Root mean square 

error of cross 

validation 

Original 2 0.73 0.0053 

Smoothing 2 0.72 0.0053 

1st Derivative 1 0.70 0.0055 

2nd Derivative 2 0.70 0.0056 

MSC 2 0.68 0.0056 

SNV 2 0.69 0.0056 

Smoothing + MSC 2 0.69 0.0056 

Smoothing + SNV 2 0.68 0.0056 

Smoothing = Savitzky-Golay smoothing, 1st derivative = Savitzky-Golay first 

derivative differentiation, 2nd derivative = Savitzky-Golay second derivative differentiation, 

MSC= Multiplicative scatter correction, SNV= Standard normal variate. 

Table 3. PLSR results of dehydrated pineapple’s aw in calibration and prediction group 

Pa Pre LV 

Sample group 

Calibration group Prediction group 

N Rc RMSEC N Rp RMSEP 

aw Original 2 90 0.73 0.0053 40 0.72 0.0054 

Pre= Pre-treatment, LV = latent variables, N= Number of samples, Rc= Correlation 

coefficient of calibration, RMSEC= Root mean square error of calibration, Rp= Correlation 

coefficient of prediction, RMSEP= Root mean square error of prediction. 

 
Figure 5. Scatter plot of actual and predicted aw of dehydrated pineapples in the calibration 

group. 
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Figure 6. Scatter plot of actual and predicted aw of dehydrated pineapples in the prediction 

group. 

Conclusion  

The calibration model for water activity of dehydrated pineapples was established by 

using averaged original data of the region of interest spectra using partial least square 

regression. The results showed that the calibration model by obtained from near infrared 

hyperspectral imaging showed an acceptable performance and accuracy for predicting water 

activity of dehydrated pineapples. It was therefore concluded that near infrared hyperspectral 

imaging could be used as a non-destructive, rapid, and reliable technique for detecting water 

activity of dehydrated pineapples, which is considered to be one of the most important quality 

factors of the finished output product before sending to customers.  
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