

### AUTOMATED WEED DETECTION USING IMAGE PROCESSING TECHNOLOGY

# <sup>1</sup>G.Nagappa, <sup>2</sup>H.M.Ganesh Kumar

<sup>1</sup>Associate Professor, <sup>2</sup>Assistant Professor Department Of ECE

St. Johns College of Engineering & Technology, Errakota, Yemmiganur

#### Abstract:

Agriculture was the first fundamental means of human sustenance worldwide. Weeds play a vital role, and the importance of detecting and classifying weeds in the agricultural industry, both in terms of technology and finances, cannot be emphasized enough. Historically, the majority of places worldwide relied on physical force to identify and remove weeds. Subsequently, many automated techniques for weed identification were developed, but, their precision was insufficient. Weed control is the most crucial agricultural practice for enhancing crop yield and reducing pesticide expenses. Current weed identification systems provide subpar results due to various limitations and constraints. This research demonstrates the efficacy of an image-processing approach for accurately identifying weeds in crops. Not only can we identify the presence of weed, but we can also identify weed in the unorganized harvest. In addition to identifying weed in crops via images, we can also detect it in recorded videos, providing confidence of its presence in the harvest. By implementing precise input application and using advanced techniques in future agricultural systems, it is possible to maintain up-to-date farming practices while effectively managing weed growth. It provides fast and accessible opportunities for identifying and controlling weeds.

Key terms: Weed detection, Image processing, Agriculture, Weed identification.

#### I. INTRODUCTION

Agriculture was the first means of human sustenance on Earth. The agricultural sector employs around 80% of the population in India. By 2012, agricultural land accounted for 60.3% of the total land area. Based on a recent poll conducted by the national population commission, India has officially overtaken China in terms of population and is now the most populated country in the world as of 2023. This illustrates the crucial role of agriculture in our society. However, agricultural data reveal a substantial decrease in agricultural cultivation, partly due to the presence of weeds.

Weed identification and classification are essential in the agricultural industry, since they have a significant impact on both technical and economical aspects. A plant that grows in close proximity to useful agricultural crops is classified as a weed. Any plant that has an impact on agriculture might be classified as a weed. Unwanted plants, known as weeds, engage in a competition with valuable crops for essential resources such as water, sunshine, and space. Additionally, they have the potential to be toxic and decrease agricultural output.

Removing weeds from the crop's plants may enhance their development, increase the likelihood of healthy harvests, and enable farmers to generate profits instead of incurring losses. The cost of buying fertilizer and other resources may be minimized by eliminating weeds. In order to eliminate the weed, we must first identify its location in the field and, if possible, ascertain its current growth pattern.

Weeds may engage in competition with crops for nutrients, therefore diminishing output. Additionally, weeds have the potential to impact crops by assimilating nutrients from them. To maintain equilibrium, it is crucial to manage the growth of unwanted plants in cultivated fields. Failure to implement control measures might result in a significant decline of around 60% in worldwide agricultural production. The agriculture business should aim to increase crop yield while reducing weed control costs in order to alleviate pressure.

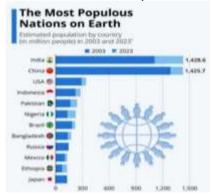



Fig 1: population census according to 2023

Removing the weeds from the crop's plants may enhance their development, increase the quality of the harvests, and ensure that the farmers generate profits instead of incurring losses. The cost of buying fertilizer and other resources may be minimized by eliminating weeds.

The lack of accurate prediction of weed production effect during the early stages of the growing season complicates weed control. Various threshold types have been used for the purpose of controlling insects and illnesses, and these instruments facilitate the process of decision-making. The primary cause of production losses when weeds and crops coexist is competition for limited resources. The primary resources that crops and weeds often fight for are light, water, and nutrients.





Fig 2.1: Mixed weeds in crops



Fig 2.2: Ordered weeds in crops

The particular resource that causes production losses varies with the unique circumstance. Effective weed management methods reduce competition by reducing weed populations and giving the crop an advantage over weeds in acquiring resources.

This paper describes the introduction in the first section and is later continued with the literature review, proposed method, experimental results, conclusion, and future work in other sections which gives a brief explanation of the project.

#### II. LITERATURE REVIEW

Some of the related study's findings are shown in this section. By creating algorithms for segmentation, feature extraction, representation, and classification, many researchers were able to build the weed identification technique. The following is a summary of a few of the recent methods discussed in the papers:

In [1] Author Bo Liu & Ryan Bruch has proposed that outlines the recent activities in this field over the past few years and gives an overall view on developing and well-liked weed identification approaches for spraying. Weed identification also contributes to the reduction or elimination of pesticide use, minimizing the negative effects of agriculture on the environment and human health, and enhancing sustainability. recent discoveries in creating new methods and rising computer capacity, profound learning-based methods are supplanted ordinary AI procedures to recognize weeds progressively.

## Social Science Journal

In [2] author J. Irías Tejeda, R. Castro has proposed that the development of an image-processing algorithm to find weeds at a particular crop site was the main goal of the project. To eliminate all of the soil from the picture and lessen pointless data, the principal stage in picture handling is the recognition of green vegetation. The vegetation was thusly the principal center after division and the evacuation of unimportant information utilizing morphological and medium channels.

In [3] Author Aichen Wanga, Wen Zhangb, Xinhua,has proposed that this evaluation be written to highlight the improvements made in weed recognition utilizing ground-based machine vision and picture handling techniques. The four strategies for weed discovery, explicitly pre-handling, division, highlight extraction, and arrangement, were given top to bottom. Different variety records and arrangement strategies, for example, variety file based, edge based, and learning-based ones, were created to recognize vegetation from foundation.

In [4] Author Badrinarayanan. V., Kendall. A., Cipolla. R, has proposed that Semantic segmentation using SegNet, a deep convolutional network architecture. SegNet's primary driving force was the requirement to create an architecture that is both memory and computationally economical for analysing road and inside scene. To demonstrate the actual tradearchitectures involved in creating segmentation, specifically training time, memory versus accuracy, we examined SegNet and contrasted it with other significant versions. Performance is highest in designs that fully store the encoder network feature maps, but memory usage is higher during inference. SegNet, on the other hand, is more effective since, to achieve good performance, it just saves the feature maps' max-pooling indices. SegNet performs effectively on huge and well-known datasets.

In [5] Authors Alotaibi, M., Mahmood, A., has proposed that by Using a biometric method called gait recognition, it is possible to identify people by their distinctive walking patterns. In this study, scientists created a deep CNN model with several layers specifically designed for recognizing human gait. The deep CNN's capacity to extract discriminative features and improve classification is an advantage, particularly if a sizable training dataset is available. empirically established the deep CNN's ideal gait design.

In [14] Authors Reddy, L. Uday Kumar, S. Rohitharun, and S. Sujana proposed that controlling weeds is a crucial and important task that can impact crop productivity. Fertilizers are crucial for controlling weeds, but their use is criticized since it is thought to be excessive and may be bad for the environment. The survey of weed and pest identification utilizing image



processing in the agricultural area will be the main topic of this research. Selective Patch Spraying is not appropriate for most farms and makes use of remote sensing. Size, shape, texture, color, and location-based data are used in the machine vision-based technique to distinguish between weed crops and diseased leaves or plants. The classification accuracy ranges from 85% to 96% depending on the algorithms and image acquisition constraints. This strategy lowers costs while also preserving the environment.

In [15] Author Wu Lanlan proposed that this study is to demonstrate the use of the support vector machine (SVM) approach and image processing techniques for field-grown maize and weed seedlings. The initial preprocessing of the field-captured original photos uses spatial transform and image processing methods. The OTSU method is used to segment young corn or small weeds utilizing the H channel. We discovered that the H channel works better to lessen the effects of changing lighting. In the recognition process, four shape characteristics that were retrieved from the goal are utilized. We use back-propagation neural network classifiers and SVM to distinguish between individual weed and corn seedlings. The results of the experiments demonstrate that the SVM classifier has a greater classification impact.

#### III.METHODOLOGY

### A. Explanation of Proposed Model

In the past, workers were hired specifically for weed removal to detect weeds. They will inspect every plant field to find the weeds. Then they will manually remove them using their hands or spades. In the suggested system, image processing methods can be used to find weeds. The project's primary goal is to locate weed-affected areas for additional seeding. If weeds are not lawfully controlled promptly, they could destroy the life and nature of the produce. This idea's main goal is to cut down on the effort and time required to find and get rid of weeds. Deep learning can be utilized to examine recordings for data that isn't quickly noticeable outwardly or mathematically and use that information to distinguish things. Real-time object detection is also used.

We will take into account Read picture, Grayscale image, Enhancement, Binarization, Area Thresholding, Area identification, and Weed detection throughout this process. Additionally, each crop is examined for its intensity of colour, the intensity of edge, the intensity of size, etc. After segmentation and edge detection, the colour of the crop and weed's edges and veins is white, while the rest of the image is entirely black. It has gone through the filtering procedure after going through the edge detection and colour segmentation processes. Every crop may be identified via the filtering procedure, which also allows for the

## Social Science Journal

determination of each crop's gain value, trade-offs, edge, frequency, and weed intensity.

Image Capture High-resolution cameras are used to capture images of weeds in agricultural fields or from web datasets for greater exactness in RGB design. Each obtained picture is saved in its suitable size and as a jpg record.

An image of a crop field that is captured using a webcam or a crop row that has been scanned serves as the system's input. A single crop row image can be the input, which needs to be filtered for image enhancement to remove noise like lighting, dirt backdrop, etc. Median, mean, and average filters are some of the filters that can be used on the input image. The input image is prepared for enhancement after preprocessing.

An algorithm called "colour detection" is utilized to detect the pixels in a picture that will suit or be set to a particular colour range.

Edge detection is a strategy for picture handling that finds the edges of items in an image. Weed edges are recognized in the drives. It works by searching for changes in splendor. Information extraction and picture division both require edge detection.

Extraction of Features Weed location attributes is recovered after pre-handling. Component extraction is the process of describing a collection of highlights to successfully present the data for analysis and characterization. Size, shape, and variety-based features as well as surface viewpoints like entropy, energy, contrast, and so on are used to separate the attributes. After applying the modules that are even described below, the weeds are recognized in the input image.

### B. Block Diagram

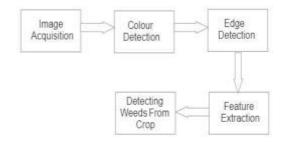



Fig 3: Block Diagram of the proposed method.



### **MODULES IMPLEMENTATION:**

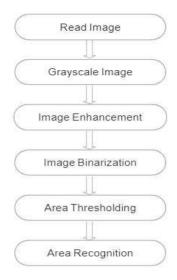



Fig 4: Flow diagram of modules implemented.

### Read Image:

Read image is the step is that where the detailed information of an image is taken into consideration and used to distinguish the weeds present in the yield.

### **Grayscale images:**

The following are techniques using image processing to find weeds. firstly, picture acquisition For more accuracy in RGB design, high-resolution cameras are used to capture images of weeds in horticulture fields or from online sources. Each image that is obtained is stored as a jpg file at the appropriate size. Preprocessing Various elements, including noise, varying lighting, low image quality, and undesired backdrop, have an impact on the photos that are obtained. The conversion of RGB to grayscale, the conversion of grayscale photos to binary images, and the use of filtering techniques to eliminate background noise are all examples of pre-processing tools.

Pictures in grayscale are monochrome, and that implies they just have one tone. There are a few dim levels not entirely settled by every pixel. A run-of-the-mill grayscale picture holds 8 bits of information for every pixel or 256 potential shades of grey. In a grayscale picture, every pixel in the computerized portrayal just conveys information about the brilliance of the light. Commonly, simply the differentiation between the most obscure dark and the lightest white is obvious in such pictures. All in all, the picture just utilizes the shades of grey found in dark, white, and grayscale.

#### **Image enhancement:**

Picture improvement is the strategy of upgrading the first information's quality and data content before handling. Advanced pictures are altered during the course of picture upgrade to give results that are more qualified for show or extra picture examination. The goal of image enhancement is to increase the apparent distinction between the scene's characteristics to make an image easier to visually perceive. There are

## Social Science Journal

numerous methods for raising the quality of images. After all geometric and radiometric aberrations have been removed, picture augmentation is tried.

Plant leaves are typically green in color. Additionally, the hues and variety of changes in water, nutrients, climate, and season can change the color, making the reliability of the color feature low. Therefore, we decided to exclude color information and instead identify different plants using the grey-level image of a plant leaf. As a result, just the green component of each pixel in the color image is computed.

### **Image Binarization:**

The most common way of transforming a report picture into a bi-level record picture is known as picture binarization. High-contrast pixels make up a double assortment of picture pixels. The noise in the photographs, also known as "image processing," prevents auto encoders from recognizing the images. We will apply a Binarization technique, which is frequently used with artificial intelligence, to reduce the background noise produced in photographs. Binarization is the technique of converting any entity's data characteristics into vectors of binary values to increase the performance of classifier algorithms. The most popular method for converting a picture's grayscale from a 0-255 range to a 0-1 range is binarization.

#### **Area Thresholding:**

Area Thresholding is a sort of picture division in which we change an image's pixel piece to work with the examination. Through the method involved with thresholding, we transform a variety of grayscale pictures into a paired picture or one that is just high contrast. The simplest technique for segmenting images is thresholding. Thresholding can also be used to produce binary pictures from a grayscale image.

#### Area:

The most vital phase in picture handling is the acknowledgment of green plants to wipe out all the soil from the image and reduction futile information. Then, by dividing and wiping out unessential data using medium and morphological channels, it zeroed in on the vegetation. disposing of trivial information from the image to take out the aggregate of the dirt. Then, at that point, by fragmenting and eliminating unimportant information utilizing medium and morphological channels, it focused on the vegetation.

### C. Implementation:

Several photos can be taken to detect the weed. Edge detection and the color segmentation process will be into account during this process. After segmentation and edge detection, the color of the crop and weed's edges and veins is white, while the rest of the image is entirely black. It has gone through the filtering procedure after going through the edge detection and color segmentation processes. Every crop may be



identified via the filtering procedure, which also allows for the determination of each crop's gain value, tradeoffs, edge, frequency, and weed frequency.

if the crop has a lower edge frequency than the weed. They have a high edge frequency then. This study takes into account a crop with thin leaves, whose edge frequency is lower than that of weeds. The edge frequency is determined using a photo of just the weed. The program calculates the number of edges by using a "for a loop." A single block containing the weed is analyzed and the number of edges is found to be 900 approximately.

#### IV. EXPERIMENTAL RESULTS:

When an image of a field containing both plants and weeds is captured, the project's experimental outcomes are shown. The image will then be processed using various techniques such as read image, greyscale image, image enhancement, image binarization, area thresholding, and area recognition of the specified algorithms in the software after being uploaded in Matlab. The presence of weeds in the image will be identified, and by running further code, we may even determine where in the image the weeds are spread out. Along with comprehensive pixel, edge detection, and other information.

The loading of the image from the source, color segmentation, and edge detection process an image in preparation for more sophisticated processing. The technique used to distinguish the crop which also includes weed from the backdrop is called color segmentation. The technique aids in separating each color that can be seen from the others.

We must convert the color-segmented image into a grayscale image to correctly detect edges. The image is prepared for filtering, in the following step, via techniques like color segmentation and edge detection. The filter in this case is used to identify areas where edges occur frequently within a certain range (weed frequency range). Here, is the image that was used as input for the edge detection stage above. Thresholding is a kind of picture division wherein we change an image's pixel synthesis to work with the examination. To change a variety or grayscale picture into a parallel picture during thresholding. So by following the implementation steps perfectly can obtain all the desired experimental result the image preview of the project are attached below with a neat explanation. The figures mentioned below will give a keen review of the output of the project.

## Social Science Journal

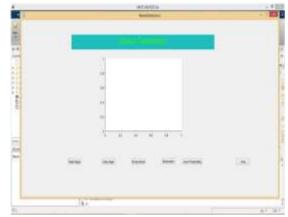



Fig 5: Base view after running code.



Fig 6: Selecting an image from test images.



Fig 7: Read the image.



Fig 8: Grayscale image





Fig 9: Image Enhancement.



Fig 10: Image Binarization.

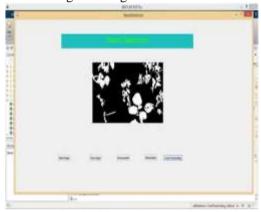



Fig 11: Area Thresholding.

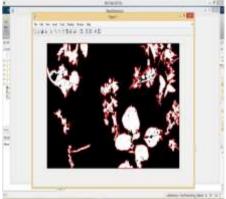



Fig 12: Area of weed.

## Social Science Journal



Fig 13: Video selection for weed detection.



Fig 14: weed detection in the crop.

#### V. CONCLUSION:

This research explores the technique and use of weed identification using image processing utilizing the Matlab program. Various approaches, such as Read image, Grayscale image, Enhancement, Binarization, Area Thresholding, Area identification, and Weed detection, may be used to analyze images of crops. Cannabis detection may also be performed on recorded videos. Optimal methods must be selected to facilitate decision-making. Various agricultural production scenarios have used image processing methods. The classification accuracy is influenced variously by the resolution of the pictures used by the algorithms and the limitations of image capture. The improvement in comparison to the previous study lies in the enhanced methodology for weed identification, achieved via the use of diverse and highly efficient algorithms. Furthermore, the video's weed identification may be determined using a few fundamental constraints.

Early detection of weeds is essential for their effective management and eradication. If weeds are not effectively managed in a timely manner, they have the potential to significantly damage the vitality and ecosystem of the crops. The image processing method detects and eradicates weeds that are growing among the crops. The objective of developing such a system is to identify regions that are impacted by weeds and repurpose them for further cultivation. In the future, the Herbicide Sprayer unit will get notification on the existence of weeds in that particular area. The primary



objective of this concept is to reduce the labor and time needed to locate and eliminate weeds.

#### REFERENCES

- [1] Liu, Bo, and Ryan Bruch. "Weed detection for selective spraying: a review." Current Robotics Reports 1 (2020): 19-26.
- [2] Tejeda, AJ Irías, and R. Castro Castro. "Algorithm of weed detection in crops by computational vision." In 2019 International Conference on Electronics, Communications, and Computers (CONIELECOMP), pp. 124-128. IEEE, 2019.
- [3] Wang, A., Zhang, W. and Wei, X., 2019. A review on weed detection using ground-based machine vision and image processing techniques. Computers and electronics in agriculture, 158, pp.226-240.
- [4] Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. "Segnet: A deep convolutional encoder-decoder architecture for image segmentation." IEEE transactions on pattern analysis and machine intelligence 39, no. 12 (2017): 2481-2495.
- [5] Alotaibi, Munif, and Ausif Mahmood. "Improved gait recognition based on specialized deep convolutional neural network." Computer Vision and Image Understanding 164 (2017): 103-110.
- [6] Paikekari, Ajinkya, Vrushali Ghule, Rani Meshram, and V. B. Raskar. "Weed detection using image processing." International Research Journal of Engineering and Technology (IRJET) 3, no. 3 (2016): 1220-1222.
- [7] Desai, Riya. "Removal of weeds using Image Processing." International Journal of Advanced Computer Technology (IJACT) (2016).
- [8] Pandey, Sakshi, Ruhi Jain, M. A. Sayeed, and G. Shashikala. "Detection of weeds in a crop row using image processing." Imperial J. Interdiscipl. Res. 2 (2016).
- [9] Amruta, A. "Aware." Crop and weed detection based on texture and size features and automatic spraying of herbicides International Journal of Advanced Research (2016).
- [10] Panqueba, B. and Medina, C., 2016. A computer vision application to detect unwanted weeds in early-stage crops. WSEAS transactions on computer research, 4, pp.41-45.
- [11] Kumar, D.A. and Prema, P., 2016. A novel approach for weed classification using Curvelet transform and Tamura texture feature (CTTTF) with RVM classification. International Journal of Applied Engineering Research, 11(3), pp.1841-1848.

## Social Science Journal

- [12] Shinde, Ashitosh K., and Mrudang Y. Shukla. "Crop detection by machine vision for weed management." International Journal of Advances in Engineering & Technology 7, no. 3 (2014): 818-826.
- [13] Hlaing, Su Hnin, and Aung Soe Khaing. "Weed and crop segmentation and classification using area thresholding." IJRET 3 (2014): 375-382.
- [14] Reddy, L. Uday Kumar, S. Rohitharun, and S. Sujana. "Weed Detection Using AlexNet Architecture In The Farming Fields." In 2022 3rd International Conference for Emerging Technology (INCET), pp. 1-6. IEEE, 2022.
- [15] Lanlan, Wu, and Wen Youxian. "Application of support vector machine for identifying single corn/weed seedling in fields using shape parameters." In The 2nd International Conference on Information Science and Engineering, pp. 1-4. IEEE, 2010.
- [16] Hartzler, Bob. "The cost of convenience: The impact of weeds on crop yields." (2009).