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Abstract 

The use of Smooth Variable Structure Filter (SVSF) has been successfully overcoming 

the Localization problem. Generally, its performance depends on the knowledge of noise 

statistics for the process and measurement. Because this knowledge is not available, both are 

determined and kept to be constant for all iterations. However, this approach will lead SVSF 

to the divergence condition. Accordingly, a novel improvement, namely FISGA-IAE ASVSF, 

is proposed in this paper. This name represents the role of the Genetic Algorithm (GA) used to 

optimize the Fuzzy Inference System (FIS) that is initially applied for enhancing the adaptive 

SVSF. Unlike the traditional way, this strategy can recursively update the noise covariance of 

the process Q and measurement R. In detail, FIS supervises the adaptive SVSF to reduce the 

mismatch between the reference and estimated covariance of error innovation. To effectively 

arrange the membership function of FIS, the GA is adopted. Lastly, it is implemented to solve 

the localization problem of mobile robots in the synthetic simulation perception. By using the 

term RMSE, the comparatively presented results are analyzed. And the proposed method shows 

better performance in terms of accuracy and stability. 

Index Terms: Adaptive SVSF, IAE, FIOS, GA, Localization.  

Introduction 

The localization is relatively a new problem with an objective of estimating both the spatial 

and orientation of the mobile robot [1]–[4]. Commonly, the mobile robot is given a knowledge of 

the real-static map before it is operated [2], [4]–[6]. This map is represented with certain coordinate 

of all features in the global frame (arena) [7], [8]. The robot is initially placed on the certain position 

by user and this robot position is informed to it. The robot is equipped with laser scanner and rotary 

encoder, which are respectively used as the tool to immediately sense the availability of the feature 
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and detect the distance between the previous and recent position after it executes the control 

command.   It cannot be denied that the sensor suffers from the accuracy due to various factors and 

invisible noise [9], [10]. Regarding to this condition, the process and measurement would always 

be affected and perturbated.  Therefore, in order to determine the accurately estimated values of 

the robot path, the filtering strategy has been involved [11]–[15]. The popular one is Extended 

Kalman Filter which utilize the principle of gaussian distribution to recursively update the posterior 

values of mean and covariance [16]–[18]. However, the use of EKF has been limited because of 

the factor such as high-cost computation, complexity in calculating the Jacobian Matrix, having a 

risk of divergence when applied on large dynamic situation [12]. Therefore, different filter is 

commonly used as its alternative such as Smooth Variable Structure Filter [19].   As the parametric 

estimator, the SVSF also requires the properly defined covariance matrices of noise statistic which 

referring to the current system condition [20], [21]. Consequently, keeping them invariant under 

time integration as the traditional method is not recommended. For this reason, the adaptive filter 

strategy, such as Innovation Adaptive Estimation, has been popularly involved [14], [22]. However, 

it suffers from the accurate scale which giving a problem of the mismatch between the theoretical 

and actual covariance matrix of the innovation error [23]. Therefore, the IAE is still required to be 

enhanced before it is utilized to improve the estimation performance of SVSF [24]. As presented 

in this paper, the novel improvement is lies on the presence of Fuzzy Inference System (FIS) that 

is initially optimized by Genetic Algorithm (GA). Henceforth, it is called FIS-GA-enhanced 

ASVSF-IAE. It is then used to solve the localization problem of mobile robot. By utilizing the term 

of RMSE, the estimated values are then compared with the result of the other conventional method. 

Based on this comparative result the proposed method shows better accuracy and stability. 

The rest of this paper is organized as follows: Section II presents the motion model and 

measurement used for localization. Besides that, the former formulation of SVSF is also 

presented. Section III presents the concept of proposed method together with the basic theory for 

each sub-method. Section IV presents the result and analysis. And Section V presents a 

conclusion 

Methodology 

A. Kinematic Configuration, Motion Model and Measurement Model 

Suppose the robot is placed on the surface environment with x, y as the spatial pose and θ as 

the orientation or heading of the robot.  

 

(1) 

Then the configuration of the robot is modelled as follows 

 
Figure 1 Kinematic Configuration [14], [22] 
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Moreover, by considering that the robot moves and turns based only on the different 

speed values of the right and left wheel, the following equation represents the kinematic 

equation for the mobile robot 

 

(2) 

Equation (2) shows the motion model of the robot when the right and left speed are 

same after perturbated by random noise. Contrary, when the right and left velocity are not same, 

in a certain angle the robot will turn depending on this diversity. Therefore, the analogy of this 

motion can be expressed as follows 

 

(3) 

Noted that Rand W in (3) are Rr and Wr in Fig. 1. Both of them are the length between 

the robot's outer wheel and the distance of the separated wheels, respectively. And C is the 

point of the turn causing angle. Meanwhile, vr and vl represent the speed of right and left wheel 

after following by small perturbation. These velocities are calculated as follows 

 
(4) 

For ur and ul are the control command given by the user with a perturbation vector of 

ζ = [ζ1 ζ2]T  which are the move and turn factor inferencing the motion. Additionally, the 

second assumption is that the robot is also equipped with a laser with the distance δLand 

bearing βLare the output of its measurement. Hence, the following model is designed as the 

model relative to the measurement 

 
Figure 2 Feature Detection [14], [22] 

Where d or dls refers to the laser scanner displacement respect to the robot frame. 

Meanwhile, xls
R = [xls yls]T  refers to the position relative to the robot in local frame, which 

mathematically calculated as follows 

 
(5) 
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Continuously, by knowing the robot pose xR, and the feature coordinate in the global 

frame xL = [xL,x xL,y]
T

, the following equation is presented as a direct-based measurement 

model for a single measurement zi. 

 

(6) 

Naturally, the measurement is noisy, therefore, in order to realistically start the 

synthetic-based experiment using this model, every measurement zi  is assumed to be 

perturbated as well. Therefore, the following equation is used to apply the distance and bearing 

noise r = [rδ rβ]
T
 to the laser scanner’s output.  

 
(7) 

B. General Formulation of SVSF 

The SVSF is relatively new robust estimator, which utilizes the sliding mode concept 

as the core to tune the gain [25], [26]. Different from the optimal method, Extended Kalman 

Filter, the SVSF can also be applied for linear and nonlinear system [25]. Besides that, the 

covariance update form is originally derived without any reduction and simplification [11]. 

Therefore, the SVSF has been approved and accepted as the proper method to model the 

uncertainty and remove the error following the real state. In order to ease our understanding, 

the general form of SVSF is chained in this section, in which it is a revised form indicated by 

the existence of covariance update equation. Given the dynamic system model as shown below 

 
(8) 

Where k is the discrete time index, x ∈ Rn is the state vector, u is the control vector, 

and z ∈ ℝm is measurement vector. Additionally, ω and ν are the small additive noises of the 

process and measurement, respectively, in which their corresponding covariances are denoted 

by Q  and R , respectively. Furthermore, f(. )  and h(. ) refer to the state transition and 

measurement function, respectively. It is assumed that the characteristic of this dynamic system 

model is expressed as follows. 

 

(9) 

Where δ is Kronecker delta function. Whereas, E[. ] and Cov[ , ] represent mean and 

covariance term, respectively. This equation shows that the noises are uncorrelated and zero-

mean with Q and R covariances [23]. As the common filtering method, the SVSF consists of 

two steps, the time update or prediction stage and measurement update or update stage. 

Predefining the initial state and covariance with given the control command, the predicted state 

of SVSF can be calculated as follows 

 (10) 

Where f(. )refers to the state transition function with F as its corresponding Jacobian matrix. 

It can be calculated by taking partial derivative of its own function with respect to the state. Then 

by utilizing it, the predicted state covariance can be computed as expressed as follows 
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 (11) 

Up to this point, the prediction stage is conducted. Furthermore, the measurement update can 

be sequentially done as follows 

 (12) 

Where h(. ) refers to the measurement function with H is considered as its Jacobian 

form calculated by taking partial derivative its function with respect to the state. Once it is 

calculated, the innovation sequence can be computed before it is used to determine the online 

gain of SVSF. Mathematically, it is described as follows 

 (13) 

Where zk refers to the real measurement. Theoretically, this innovation sequence has 

the covariance which can be calculated using the Jacobian matrix of H  as presented below 

 (14) 

Therefore, the gain of SVSF can be determined as 

 

(15) 

Where .+ ,    .   ̅̅ ̅̅ ̅̅̅ ̅̅ ̅ , and sat(. )  illustrate to the pseudo inverse, diagonal matrix, and 

saturation function, respectively. Meanwhile, all the variables used in updating the gain can be 

sequentially calculated as follows 

 
(16) 

 
(17) 

 

(18) 

Then, by using the gain of SVSF, the updated state and its corresponding covariance 

can be determined as presented as follows, respectively.  

 (19) 

 (20) 

It is noted that (1)-(13) are used as the single cycle of the SVSF process. Therefore, in 

order to roll into the next process, it requires the residual/posteriori error, which can be 

calculated as follows 

 (21) 

Where the relative measurement value of  ẑk|k  is calculated by referring to the 

following equation 

 (22) 

As a note, the stability of SVSF’s conventional form can be evaluated by adopting the 

following equation  
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 (23) 

The SVSF-Based Localization Principle and Algorithm 

In order to start the synthetic-based experiment as the validation for the proposed 

method in this paper, the following hypotheses are presented:  

1. All the features sensed and detected by the robot are assumed as the 2D-represented 

point feature.  

a. The feature is static and does not have any effect to the motion of the robot.  

b. The uncertainties caused by the small perturbation are always following the process and 

measurement, which are normally distributed (Gaussian) 

c. The robot knows the environment condition (all the features are assumed to be 

available). And all the distinctive features are spread in this environment without any 

ambiguous. 

d. The correspondence is known and the robot only can sense a point of feature.  

e. Initially robot is placed on a certain position in the global frame with less uncertainty. 

Sequentially, the steps are chained to ease the understanding the algorithm of 

localization based on SVSF. These steps include the prediction, correction, and estimation 

which are detailly presented as follows 

Initialization 

Initialize the robot state  x̂0  and corresponding covariance P0  and define Q  and R 

together withγ.  

Prediction Step 

Compute the predicted state of the robot using (10), in which f(. )  is the function 

representing the motion model in (2) and (3). Next, compute the compute the covariance 

relative to the predicted state using (11) for 

 

(24) 

Equation is the used Jacobian matrix, which is randomly chosen according the diversity 

of right and left perturbated velocity. Therefore, (24) can possibly having the following 

characteristic depend on A and B situation, respectively.  

 

(25) 

 

(26) 

It is noted that u in (26) represent the input command with zero-perturbation.  

Innovation Sequence and Update Gain of SVSF 

Compute the innovation sequence using (13) after applying the predicted state into 

h(. ) function which represents the measurement model in (7). As a reminder that the 
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correspondence is known. Compute the gain of SVSF using (15) which is firstly initiated by 

calculating the theoretical covariance of innovation sequence in (14) with  

 

(27) 

is considered as the Jacobian matrix of H. Detailed it can be presented as follows 

 
(28) 

Where all variable in (28) can be expanded as follows  

 (29) 

 (30) 

 (31) 

Update the state and Covariance 

Compute the updated state and its corresponding covariance using (16) and (17), 

respectively. 

It is noted four steps are applied for the time transition of k − 1 to k. Therefore, once 

(28)-(31) are obtained, they are used for the next cycle together the residual value calculated 

using (22). 

The Proposed Method 

As know that the SVSF requires accurate noise statistic which is actually unknown in 

the real application. For this reason, the adaptive filtering based on IAE is implemented aiming 

to enhance the SVSF by completing it with an ability to recursively update the covariance 

matrices of the process noise Q and measurement noise R.  

IAE for SVSF 

According to our latest achievement as per [14], the formulation of adaptive SVSF 

based on IAE is presented. It is gained based on the principle of Maximum Likelihood 

Estimation (MLE) that is used to derive the covariance of innovation sequence through the 

state covariance directly. Mathematically, it is expressed as follows 

 

(32) 

Where d refers to the innovation sequence of SVSF in (22) and sigma notation with a 

certain limit is a representation of moving window where N is the size of its window. And  Ĉ 

is called as practical covariance noise of innovation sequence. And according to its values, both 

the estimated covariance matrix of process noise  Q̂  and  R̂ are respectively given as follows 

 
(33) 

 
(34) 

As known that the use of IAE cannot accurately reflect the reality of system and 

measurement noise due to the presence of a moving window used to calculate the estimated 

covariance of innovation sequence. Therefore, in order to prevent unexpected occurrence, the 

use of controller based on Fuzzy Inference System is involved.  
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FIS for ASVSF based on IAE 

The discrepancies between the actual and theorical covariance of innovation sequence 

can be occurred once the estimated covariance matrices do not reflect the real condition of the 

system. Therefore, the use of FIS aims to find an approach that can be used to readjust the 

posteriori noise covariance based on a defined metric representing the mismatch between two 

different types of innovation sequence covariance. This metric is mathematically expressed as 

follows  

DoM = Sk − Ck (35) 

Where DoM stands for Degree of Matching. As its aim, DoM is then used to find the 

adjuster to reupdate the estimated covariance of the process noise in (32) and measurement in 

(33) from the perception of FIS. Analogically, when the DoM is around zero, the discrepancy 

is almost none. Therefore, it is no need to change the estimated covariance noise statistic. 

Contrary, when it shows large or small discrepancy, the adjuster is determined to be used 

rescale those covariances. Referring to (34), the large discrepancy is found when DoM greater 

than zero and the small discrepancy is found when DoM is smaller than zero. If the role of 

adjuster Adj used to readjust, then R̂ is expressed as follows   

R̂new = R̂initial + Adj (36) 

Therefore, the adaptation procedure can be presented as follows 

If DoM ≅ 0 , then Adj = 0 and  R̂new = R̂initial   
If DoM > 0, then Adj is increased and   R̂new is decreased based on (36) 

If DoM < 0, then Adj is decreased and  R̂new is increased based on (36) 

Meanwhile, when the adjuster Adj is used to redefine  Q̂, its mathematical expression 

is presented as follows   

Q̂new  = Q̂initial ∗ Adj (37) 

Therefore, the adaptation procedure can be presented as follows 

If DoM ≅ 0then Adj =identity matrix and  Q̂new = Q̂initial 

IfDoM > 0, then Adj is increased and  Q̂new  is decreased based on (37) 

IfDoM < 0, then Adj is decreased and  Q̂new is increased based on (37) 

It is noted that the adjuster Adj is given by FIS with the DoMas the input. Meanwhile, 

the idea of relationship between  Q̂ and Adj can be explained as shown below. By definition, 

the theoretical covariance of innovation can be expanded as follows  

Sk = H(FPk−1|k−1FT + Q)HT + R (38) 

Therefore, it is clear to declare that Q gives linear effect to the value ofS. If Q is small 

than S is decreased and vise-versa. Accordingly, if the discrepancy occurs indicated by the 

DoM value, then the update procedure of  Q̂ can be done by augmenting or diminishing  Q̂initial  

As known that this adaptation is a separative manner which needs to keep  Q̂ constant 

when applying an adaptation to  R̂  and vise-versa. Furthermore, the rule used in FIS is depicted 

as follows. 
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Figure 3 Rule-Base 

Fig. 3 shows the relationship “if-and” between the input (three different classification) 

and output (five different classification) in the FIS with the same weight of “1”. The 

membership of the normal input (before optimization) is presented as follows. Besides that, 

Fig. 3 also emphasizes that this experiment applies single input single output, three different 

memberships of DoM as the input corresponding to five different memberships of the Adj. In 

which, the input membership function is designed as follows 

 
Figure 4 Input Membership Function 

Based on Fig. 4, the DoM  is linguistically divided into three classification of 

membership function which are “negative” (when it is smaller than zero), zero (when the 

mismatch around zero), and “positive” (when it is greater than zero). It is considered as the 

input in this experiment with the adjuster Adj  is considered as the output. In which, the 

membership function of the output is represented by the following figure. 

 
Figure 5 Output Membership Function 

Fig. 5 depicts that the use of more classification aims to get smooth resolution of the 

adjusterAdj. Although, all the procedure of FIS is completely presented, as known that the 

manual setting of membership function is not recommended. It is because there is no available 

clue representing the need of output when the inputs give a certain value. Therefore, the risk of 

output dissonance relative to the input and system condition is still high. 

Genetic Algorithm used for FIS-enhanced ASVSF-IAE 

Based on the reason stated previously, it is proposed an optimization method used to 

tune the arrangement process of membership function. The idea behind this optimization is to 

define an arrangement resulting smaller RMSE through the input membership function. The 

analogy is clear since the mismatch causes large RMSE because of improper adjustment of Q 

and R makes the filter giving bad condition to the estimated value, then the cause is required 
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to be reduced. Therefore, GA is used to optimize the arrangement of input membership function 

forDoM. In order to performance GA to FIS-IAE ASVSF, the following steps are considered 

• Generating Initial Population  

o Fitness Evaluation  

o Selection  

o Crossover and Mutation  

o Store Generated New Population 

Where the fitness function used in this experiment in assumed as RMSE calculated as 

follows  

RMSE = (
∑ (xi − x̂i)

2N
i=1

N
)

0.5

 
(39) 

For N the number of SVSF process solving the problem of localization,   x̂i refers to the 

estimated value, that is the robot pose. Meanwhile  xi is the reference/expected value of the 

robot pose (when there is no any perturbation). By following this analogy, it clear to have a 

relationship for all variant value in the input membership function corresponding to output of 

FIS-IAE ASVSF-based Localization algorithm. The arrangement of DoM  in the form of 

membership function given by GA is presented as follows. Since, there are two different 

adaption which are relative to R with Q is fixed and relative to Q with R is fixed, therefore, the 

input arrangement is classified in two types as follows  

 
Figure 6 DoM Arrangement Given By GA-Tuned FIS for Adj relative to 𝑅 (𝑄 is fixed) 

Fig. 6 shows the result of using GA. The input membership function is adjusted 

automatically corresponding to the smallest RMSE for estimated robot path. 

 
Figure 7 DoM Arrangement Given By GA-Tuned FIS for Adj relative to 𝑄 (𝑅 is fixed) 

Fig. 7 depicts the normal arrangement is changed after it is tuned using GA. This 

membership representation is determined according to the smallest RMSE of the estimated 

robot path with an adaptation to Q (R is assumed to be fixed). Up to this point, by recalling all 

principles of localization algorithm in the previous section, the proposed method can be 

completely depicted in Fig. 8. 
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Figure 8 the Flowchart of Obtaining the Proposed Method 

Results and Discussion 

To validate the effectiveness of the proposed method, there are some different 

performances of analyzed. It includes other conventional method, which are the predecessor of 

the proposed method, FISGA-IAE ASVSF-Based Localization Algorithm. In detail they are 

IAE ASVSF, FIS-assisted SVSF-IAE, and FIS-GA-SVSF-IAE. According to characteristic of 

the IAE, the use of adapted R is considered when Q is fixed, and vise-versa. Therefore, there 

will be six comparative results. The synthetic simulation is designed for those methods with 

the following initialization relative to the noise statistic 

q = [0.3, 0.4]T, r = [0.85,
π

180
]

T

, Q = diag(q.2 ), R = diag(. r2) 

Secondly, the parameterization for SVSF is sequentially presented as follows 

γ = 0.8, ez,0 = [0,0]T 

Meanwhile, the locomotion parameters are presented as follows 

Wr = 30 cm 

Where, it is noted that these parameters are adopted from the real platform dimension 

and datasheet of Turtlebot2 with the laser scanner is placed on the distance of 5 cm from the 

body center. The ground truth is given as follows 

 
Figure 9 Ground Truth (a) Expected Path (b) Real Path caused Noisy Process and 

Measurement 

Fig. 9 depicts that the ground truth in this experiment considered with the known 

coordinates for all landmarks as the feature-represented map and the robot path is noisy because 

of some factors. Furthermore, this experiment assumes the robot knows its initial position on 

the global frame as follows 
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xR,0 = [
0,0,35π

180
]

T

, P0 = [
0 0 0
0 0 0
0 0 0

] 

Then by performing different algorithms, the comparative result in term of RMSE for 

robot pose are presented in the following table. 

Table 1 RMSE Values Relative to Estimated Path Based on SVSF-IAE Localization Algorithm 

Localization Algorithm 
With Adapted R (Q is fixed) 

x (cm) y (cm) 𝛉 (rad) 

SVSF-IAE 27.4668 22.3482 0.0016 

FIS-assisted SVSF-IAE 20.9244 19.5056 0.0015 

FIS-GA-SVSF-IAE 18.1324 18.5161 0.0015 

Table 1 shows that the RMSE has been successfully reduced when the IAE-SVSF-

based Localization Algorithm is tuned using FIS. It can be seen from the second result in Table 

result that the RMSE for x-coordinate, y-coordinate, and heading of the robot are smaller than 

previous one.  However, this result should be validated from the perceptive convergence, 

therefore, the following figure is shown 

 
Figure 10 The Performance of FIS-assisted SVSF-IAE-Based Localization Algorithm with 

Adapted 𝑅 

Fig. 10 shows the performance of FIS-assisted SVSF-IAE-based Localization 

algorithm. It can be observed from this figure, the estimated values are close to the expected 

value as presented previously in Fig. 6(a). According to this figure, the performance SVSF-

IAE is enhanced with a guaranteed convergence proven by no much deviation from the ground 

truth. This achievement is obtained based on manual setting of the input membership function, 

which is believed that it can be more increased when GA is applied. Accordingly, with the 

same synthetic simulation and initialized parameter, the result of GA-assisted FIS-SVSF-IAE-

based Localization algorithm can be seen from the last row in Table 1. It shows that the RMSE 

relative to the spatial path of the robot are reduced. Again, as an effort to evaluate its 

effectiveness, the following figure is presented. 
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Figure 11 The Performance of GA-FIS-assisted SVSF-IAE-Based Localization Algorithm 

with Adapted 𝑅 

Fig. 11 depicts the convergence solution offered by the proposed method, which it is 

not diverge from the ground truth. Up to this point, its accuracy and stability are validated using 

a term of RMSE when the adapted R is approached. Besides conducting an observation and 

analysis relative to adaptation R when Q is assumed to be invariant, the role of the proposed 

method is also analyzed regarding its implementation to recursively update Q with fixed-R. 

Likely, it is begun by presenting the following table.  

Table 2 RMSE Values Relative to Estimated Path Based on SVSF-IAE Localization Algorithm 

Localization Algorithm 
With Adapted Q (R is fixed) 

x (cm) y (cm) 𝛉 (rad) 

SVSF-IAE 27.4668 22.3482 0.0016 

FIS-assisted SVSF-IAE 20.7056 17.8804 0.0013 

FIS-GA-SVSF-IAE 17.0180 15.0005 0.0011 

Again, the stability of the proposed method is validated according to Table 2. It can be 

seen from the result in second row that using FIS-assisted SVSF-IAE can sufficiently improve 

the normal algorithm’s performance. Clearly, the small RMSE offered by this algorithm 

represents the effectiveness of using FIS to the marginalized path both for spatial and heading 

of robot. It can also be proven from the side-of-view relative to the convergence as shown in 

the following figure. 

 
Figure 12 The Performance of FIS-assisted SVSF-IAE-Based Localization Algorithm with 

Adapted 𝑄 
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Fig. 12 illustrates the stability of FIS-assisted SVSF-IAE-based Localization algorithm 

in term of RMSE with no divergence detected. However, it can still be improved and tuned 

using GA once it is done by only using manually setting to DoM’s membership function. 

Similar to the previous analysis, the inference validation can be observed from the RMSE result 

on third row of Table 2. According to this result, the proposed method is not only showing 

better performance compared to FIS-assisted SVSF-IAE-based Localization algorithm but also 

giving the best solution in this experiment, in which it is implicitly stated according to a 

comparation between R and Q adaptation (see Table 1 and Table 2). This statement is also 

strengthened with the accuracy of the proposed method in estimating robot path as shown in 

Fig. 13. 

 
Figure 13 The Performance of GA-FIS-assisted SVSF-IAE-Based Localization Algorithm 

with Adapted 𝑄 

Conclusion 

This paper presents a novel algorithm for localization based on the enhanced SVSF. 

Initially, the adaptive formulation of SVSF determined by applying a principle of the 

Innovation Adaptive Estimation and it is involved as the base. Sequentially, IAE-SVSF is tuned 

using the Fuzzy Inference System with discrepancies level (defined as DoM) is considered as 

the input and an adjuster is considered as the output. The discrepancies represent the different 

between the actual and theoretical covariance of innovation sequence. Meanwhile, the adjuster 

is determined aiming to rescale the covariance matrix of process Q and measurement R noise 

statistic. As an effort to increase the accuracy of membership arrangement, the Genetic 

Algorithm is used to tune the FIS. The idea behind this optimization directly refers to the form 

of RMSE representing the estimated path of the robot. Furthermore, it is implemented as the 

core of localization algorithm and compared with other conventional algorithms. Based on the 

discussion, analysis, and perception of comparatively generated results, the proposed method 

has been showing a better performance in term of RMSE and convergency which respectively 

represents the accuracy and stability.  
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