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Abstract - This paper presents a novel neural network- based Maximum Power Point 

Tracking (MPPT) system integrated with a buck converter for efficient electric vehicle (EV) 

charging using MATLAB Simulink. The system maximizes energy harvested from 

photovoltaic (PV) panels while ensuring optimal charging conditions for EV batteries. The 

neural network-based MPPT predicts and tracks the Maximum Power Point (MPP) of the PV 

panels under varying conditions, improving accuracy and adaptability compared to traditional 

methods. The buck converter regulates the voltage and current to the EV battery, ensuring 

safe and efficient charging.Simulation results in MATLAB Simulink demonstrate the 

system's effectiveness in maintaining the MPP and achieving high energy conversion 

efficiency. The neural network-based MPPT quickly and accurately tracks the MPP even 

under changing conditions, while the buck converter ensures safe battery charging, enhancing 

battery longevity. This research highlights the potential of combining neural networks with 

power electronics to create advanced, efficient EV charging solutions, promoting the 

adoption of renewable energy in transportation. 

Keywords: Neural Networks, Maximum Power Point Tracking, Buck Converter, Electric 

Vehicle Charging, Photovoltaic Systems. 

 

1 INTRODUCTION 

The Solar-based microgrids are essential for a sustainable energy future, leveraging localized 

renewable sources to provide decentralized and efficient power, particularly for electric 

vehicle (EV) charging. The use of photovoltaic (PV) panels addresses the intermittent nature 

of solar energy, ensuring a more consistent energy supply for EVs. Neural networks (NNs) 

enhance the performance of these microgrids by predicting equipment failures, optimizing 

energy management, balancing loads, and maintaining grid stability.NNs analyze historical 

data and operational metrics to facilitate predictive maintenance, reducing downtime and 

maintenance costs. They forecast energy demand and supply based on weather, usage 

patterns, and market prices, managing resource allocation efficiently. For EV charging, NNs 

optimize the charging schedules and storage of excess energy, ensuring availability during 

peak demand or low production periods. 

NNs also ensure effective load balancing by predicting consumption behaviors and 

adjusting energy distribution in real-time, improving microgrid performance and 

infrastructure longevity. This is particularly crucial for EV charging, which can impose 

significant loads on the grid. 
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Moreover, NNs contribute to grid stability by responding to fluctuations in energy 

production and consumption, maintaining a stable supply. They enable advanced energy 

trading strategies by predicting prices and demand, maximizing economic benefits in 

deregulated markets. NNs support smart grid technologies by enhancing communication 

between energy system components, creating an intelligent, responsive grid. 

 

1.1 Proposed model 

Integrating NNs into solar-based microgrids for EV charging significantly advances 

sustainable, efficient, and resilient energy systems. Their predictive, analytical, and 

optimization capabilities ensure a reliable energy supply for EVs, positioning AI as a crucial 

element in modern energy management. A block diagram of solar based microgrid for the EV 

charging is shown in the figure below. 

 
Figure 1 Block diagram of solar based microgrid 

 

As shown in the figure, Solar PV array converts the light energy into electrical energy. The 

efficiency of the solar energy generation is improved by the MPPT (Maximum Power Point 

Tracking) controller. The electrical energy is stored in a battery bank. This battery bank 

parameter are observed and managed by monitoring and control system and further given to 

the DC loads like electric vehicle. The energy stored in the battery bank may provide power 

to the AC load, after the inversion opearation. 

 

1.2 MPPT Controller 

Solar-based microgrids are essential for a sustainable energy future, leveraging localized 

renewable sources to provide decentralized and efficient power, particularly for electric 

vehicle (EV) charging. A critical component in these systems is the Maximum Power Point 

Tracking (MPPT) controller, which maximizes the efficiency and energy output of 

photovoltaic (PV) panels. The MPPT controller continuously adjusts the electrical load to 

ensure operation at the Maximum Power Point (MPP), adapting to varying environmental 

conditions to optimize power generation. 

MPPT controllers are vital because they enhance the overall efficiency of solar power 

systems, ensuring PV panels produce the maximum possible power output despite 

environmental changes like cloud cover or shading. This efficiency boost results in increased 

electricity generation and shorter payback periods for solar installations. Additionally, MPPT 

controllers extend the lifespan of batteries in off-grid or hybrid solar systems by delivering 

appropriate voltage and current levels, preventing overcharging and deep discharging, which 

can damage batteries and reduce their longevity. In our design, we have implemented the 

perturbation and observation algorithm for the MPPT controller, ensuring consistent 

maximum power production. In our model, The Duty_Cycle function continuously adjusts 

the duty cycle based on changes in voltage and power to ensure the solar panels operate at 
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their maximum efficiency. This method helps in maximizing the energy output from the PV 

panels by finding and maintaining the Maximum Power Point (MPP). The algorithm used 

here is a perturb and observe method, where small changes in voltage and power are observed 

to determine the direction in which to adjust the duty cycle. Circuit diagram of MPPT with 

buck converter and design consideration is shown below  

Rated power=213W 

Open circuit voltage=36.3V  

Input voltagurre =28-36V  

Output voltage =12V  

Current ripple=10% 

Voltage ripple=1% 

Switching frequency = 25kHz 

Output current = Rated Power / Input  

voltage =213/12=17.75 

Current ripple 10% of 17.75= 1.775  

Voltage ripple= 1% of 12=0.12V 

 

𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟 =  
Vop(Vin − Vop)

fsw ∗ Iripple ∗ Vin
=  

12(28 − 12)

25000 ∗ 1.775 ∗ 28
=  156𝑒 −  6𝐻 

 

 

Capacitor =  
𝐼 𝑟𝑖𝑝𝑝𝑙𝑒

8 ∗ fsw ∗ V ripple
=  

1.775

8 ∗ 25000 ∗ 0.12
−  74𝑒 −  6𝐹 

 

Simulink model with Buck charging and MPPT is shown below 

 
Figure 2 Simulink model with MPPT (P&O) 

 

From the above model, we will be replacing the MPPT with a Neural Network controller. To 

do this, a dataset has to be created to train the neural network. Here the solar voltage is taken 

as the input parameter and the duty cycle is taken as the output parameter. 

As shown in the figure below, the input and output parameter has 10001 entries. 
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Figure 3 Selecting data for the training purposes 

 

After this Lavenberg Marquardt algorithm has been selected for the training purpose with 10 

neurons. The developed neural network replaced the conventional MPPT in the model as 

shown in the figure below. 

 
Figure 4 Simulink model with the trained neural network 

 

2 SIMULATION RESULTS 

2.1 Trained neural network training analysis 

2.1.1 Mu (Learning Rate) 

Mu, or the learning rate, controls the step size during the weight update process in the neural 

network training. A well-tuned Mu ensures that the network converges efficiently without 

overshooting the minimum error. In the context of the trained neural network, a balanced Mu 

helped achieve optimal convergence speed, enhancing the MPPT accuracy for the solar- 

based EV charging system. Mu of 1e-9 is obtained during the training phase. 

 

2.1.2 Gradient 

The gradient represents the rate of change of the error with respect to the network weights. It 

guides the direction in which the weights should be adjusted to minimize the error. In our 

trained neural network, monitoring the gradient ensured that the weight adjustments were 

moving towards reducing the prediction error. Low gradient values indicated successful 

convergence towards the minimum error point, validating the training process's effectiveness. 

Gradient of 3.13e-6 is obtained during the training phase. 

 

2.1.3 Epoch 
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An epoch refers to one complete pass through the entire training dataset. The number of 

epochs indicates how many times the neural network has seen the entire dataset during 

training. For our neural network, training over multiple epochs allowed the model to 

iteratively improve its performance. The final trained model showed reduced error rates and 

improved MPPT predictions, demonstrating the effectiveness of sufficient epochs in 

achieving accurate and reliable results. 61 epochs has been taken by the model to reach the 

desired state. These parameters collectively contributed to the successful training of the 

neural network, ensuring efficient energy harvesting and optimal charging conditions in the 

solar-based EV charging system. 

 

 
 

3 TRAINING, VALIDATION AND TESTING MSE AND REGRESSION 

3.1 MSE (Mean Squared Error): 

MSE measures the average squared difference between actual and predicted values. A low 

MSE indicates high accuracy in predicting the Maximum Power Point (MPP) for the solar- 

based EV charging system, ensuring efficient energy conversion. 

 

3.2 R (Correlation Coefficient): 

R measures the linear relationship between actual and predicted values, ranging from -1 to 

1. A high R value signifies a strong correlation, demonstrating the neural network's reliability 

in accurately predicting MPP under varying conditions. Regression of more than 99 % is 

obtained during training, validation and testing phase. 

Low MSE and high R values together confirm the neural network's effectiveness and 

reliability in optimizing the MPPT system for efficient EV charging  

 
Figure 5 MSE and R of the trained neural network 

 

3.3 Error histogram of the trained neural network 
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Figure 6 Error histogram 

 

 

3.4 Regression plot of the trained neural network 

 
Figure 7 Regression coefficient of the trained neural netwrk 

 

4 MAXIMUM POWER POINT TRACKING USING ANN 

The MPPT waveform obtained from the neural network reflects real-time adjustments of the 

solar panel's operating point to maximize power output. It shows dynamic changes in voltage 

and current to track the Maximum Power Point (MPP) under varying sunlight conditions. 

This waveform demonstrates the neural network's ability to optimize energy harvesting 

efficiency by adapting swiftly to environmental changes, ensuring consistent and reliable 

performance in solar-based EV charging applications. It can be seen in the below figure that 

the waveform is reaching the maximum power point of 213W. 
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Figure 8 Power vs time during MPPT operation 

 

5 BATTERY CHARGING STATUS USING NEURAL NETWORK 

The voltage waveform shows variations as the battery charges, reflecting the applied 

charging voltage and the battery's response to charging current. It typically increases steadily 

during constant current charging phases and levels off during the constant voltage phase as 

the battery approaches full charge.  SOC, representing the amount of energy stored in the 

battery as a percentage of its total capacity, increases gradually during charging. The SOC 

waveform rises as energy is transferred into the battery and decreases when energy is drawn 

from it. The current waveform fluctuates based on the charging stage and the battery's 

charging characteristics. It is typically high during the initial constant current phase and 

decreases as the battery reaches higher SOC levels during the constant voltage phase. 

 
Figure 9 SOC, current and voltage waveform of battery 

 

6 CONCLUSION AND FUTURE SCOPE 

This paper introduces a novel approach integrating a neural network-based Maximum Power 

Point Tracking (MPPT) system with a buck converter in MATLAB Simulink for efficient 

electric vehicle (EV) charging. By optimizing energy from photovoltaic (PV) panels and 

ensuring optimal EV battery charging conditions, the system surpasses traditional methods. 

The neural network-based MPPT accurately predicts and tracks the PV panels' Maximum 

Power Point under various conditions, enhancing efficiency. Simulation results validate its 

effectiveness in maintaining high energy conversion efficiency, even under dynamic 

conditions. The buck converter ensures safe charging, extending battery life and reliability. 

This study underscores the potential of neural networks and power electronics in advancing 

sustainable transportation with renewable energy. Future research can focus on real-world 

deployment validation, advanced optimization algorithms for MPPT, integration with smart 

grids, enhanced battery management strategies, and scalability for broader EV charging 
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networks. These efforts will further enhance system efficiency, reliability, and adoption of 

renewable energy solutions in transportation. 

 

REFERENCES 

[1] Himabindu N , Santoshkumar Hampannavar, Deepa B., Swapna M. “Analysis of 

microgrid integrated Photovoltaic (PV) Powered Electric Vehicle Charging Stations 

(EVCS) under different solar irradiation conditions in India: A way towards 

sustainable development and growth”, Elseveir 2021 

[2] G. Byeon, T. Yoon, S. Oh, and G. Jang, “Energy management strategy of the DC 

distribution system in buildings using the EV World Academics Journal of 

Engineering Sciences Vol.8, Issue.2, Jun 2021 © 2021, 

[3] H. LIU, P. ZENG, J. GUO, H. WU, and S. GE, “An optimization strategy of controlled 

electric vehicle charging considering demand side response and regional wind and 

photovoltaic,” J. Mod. Power Syst. Clean Energy, vol. 3, no. 2, pp. 232–239, 2015, 

doi: 10.1007/s40565-015-0117-z 

[4] D. Sbordone, I. Bertini, B. Di Pietra, M. C. Falvo, A. Genovese, and L. Martirano, 

“EV fast charging stations and energy storage technologies: A real implementation in 

the smart micro grid paradigm,” Electr. Power Syst. Res., vol. 120, pp. 96–108, 2015, 

doi: 10.1016/j.epsr.2014.07.033 

[5] D. Karabelli et al., “Tackling xEV Battery Chemistry in View of Raw Material Supply 

Shortfalls,” Front. Energy Res., vol. 8, no. November, pp. 0–10, 2020, doi: 

10.3389/fenrg.2020.594857. 

[6] O. Hafez and K. Bhattacharya, “Optimal design of electric vehicle charging stations 

considering various energy resources,” Renew. Energy, vol. 107, pp. 576–589, 2017, 

doi: 10.1016/j.renene.2017.01.066 

[7] F. Mwasilu, J. J. Justo, E. K. Kim, T. D. Do, and J. W. Jung, “Electric vehicles and 

smart grid interaction: A review on vehicle to grid and renewable energy sources 

integration,” Renew. Sustain. Energy Rev., vol. 34, pp. 501–516, 2014, doi: 

10.1016/j.rser.2014.03.031. 

[8] S. Hardman et al., “A review of consumer preferences of and interactions with electric 

vehicle charging infrastructure,” Transp. Res. Part D Transp. Environ., vol. 62, pp. 

508–523, 2018, doi: 10.1016/j.trd.2018.04.002. 

[9] S. Khan, A. Ahmad, F. Ahmad, M. Shafaati Shemami, M. Saad Alam, and S. Khateeb, 

“A Comprehensive Review on Solar Powered Electric Vehicle Charging System,” 

Smart Sci., vol. 6, no. 1, pp. 54–79, 2018, doi: 10.1080/23080477.2017.1419054. 

[10] B. Battke, T. S. Schmidt, D. Grosspietsch, and V. H. Hoffmann, “A review and 

probabilistic model of lifecycle costs of stationary batteries in multiple applications,” 

Renew. Sustain. Energy Rev., vol.25, pp.240–250, 2013, doi: 

10.1016/j.rser.2013.04.023. 


