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Abstract 

The software system has a huge amount of programming codes, several procedures, and modules. Due 

to this, it is too complex to understand. For the better experience of the user, software must be running 

efficiently. If any module gets any type of defect, it may harm the field of health care, defense, educa- 

tion, and so on. It can also be expensive in terms of money, effort, and reputation for a company. It is 

very tedious work to identify the defects in the module. To allot resources efficiently, reduce costs, and 

enhance the performance of software, the prediction of defective software is very necessary and it may 

help developers to save time and reduce the development cost. In the testing phase of software, we get 

most of the defects which reduces the quality of the software. According to the report (Herb Krasner), 

the testing phase takes more time as compared to other phases and takes more than 50 percent cost of 

the software where finding and fixing the defect takes place. This paper uses five datasets “MC1, JM1, 

KC1, CM1, and PC1” of the NASA repository for analysis. This repository contains 13 datasets with 

different instances from range 127 to 17001. Firstly, we use a Support Vector Machine (SVM), Random 

Forest (RF), and two Nä ıve Bays (NB) algorithms namely Gaussian Naive Bayes (GNB) and Bernoulli 

Naive Bayes (BNB) to calculate the results for each dataset. Secondly, we use PCA for dimensionality 

reduction and calculate the results before and after applying PCA to all aforementioned algorithms. 

Finally, we observe that after using PCA, the results of all the algorithms have been improved. 

Keywords: Machine Learning, Software Defect Prediction, Dimensionality Reduction, Principle Component 

Analysis 

1 Introduction SDP aims to oblige software professionals to allo- 

cate test resources more efficiently[28]. Using SDP 

approaches, errors are found early in the ”software 

development life cycle” (SDLC)[4][23]. It involves 

the use of historical data, metrics, and various 

algorithms to create models that can identify areas 

of code or modules that are more likely to con- 

tain defects. This process requires a combined 

effort of all software development teams for ana- 

lyzing, planning, testing, and execution. In the 

It is a challenging process to develop qual- 

ity software that can fulfill users’ requirements. 

Removing errors or flaws in software is the pri- 

mary factor that determines its dependability and 

quality[11][27]. Software defect prediction(SDP) is 

a technique used in software engineering to antic- 

ipate or predict the presence of defects, bugs, or 

issues in a software system before it is released. 
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Fig. 1 Iceberg Model for SDP 

• 

• 

• 

• 

testing phase, we get most of the defects which 

reduce the quality of the software. According to 

There are no standard performance measures 

The connection between fault and attributes 

Problems in predicting cross-project [ 16][26], the testing phase takes more time and 

more than 50 percent cost of the software, where 

finding and fixing the defect takes place. How- 

ever, there is a correlation between the Iceberg 

model [16] and the overall cost of software deliv- 

ery, which is not always visible. Another paper of 

Anon 2018a (Software fails watch) which was pub- 

lished in Tricentis, examined 606 famous software 

failures. This paper reported that 314 companies 

were involved in this analysis, assets worth $1.7 

trillion, and 3.8 billion people were affected. 

Several old and new methods have been used 

by researchers in the last few years for SDP like 

manual testing, automation, static analysis, and 

AI approaches. Some of the techniques take lots 

of time, but some of them are very fast, some of 

them do not require historical datasets but in some 

approaches, we need historical datasets. We can 

see the differences among all of them in Figure 5. 

In this field of SDP, researchers have found sev- 

eral issues and attempted to provide solutions. 

However, no solution by the researchers has been 

accepted universally. Several problems are still 

unanswered [2]. The problems of the SDP are as 

follows: 

The Economics of Predicting Software Defects 

Several experiences have shown that the use of 

defective software hurts the business. Suppose we 

take an example of a defective life-critical system 

software of any hospital. It is very dangerous to 

use. This could even kill someone. Critical busi- 

ness applications need reliable software, and it is 

the main challenge for the development team of 

the software industry. It can lead to various issues 

and challenges throughout the software develop- 

ment lifecycle. Here are some common problems 

associated with defects in software: 

Functional Issues: Defects can cause the 

software to behave unexpectedly or fail to perform 

specific functions as intended. This can result in 

incorrect calculations, data processing errors, or 

other functional issues. 

User Experience Problems: Defects can 

impact the user interface, making it difficult for 

users to interact with the software. This may lead 

to frustration, confusion, and a poor overall user 

experience. 

Security Vulnerabilities: Some defects can 

create security vulnerabilities, exposing the soft- 

ware to potential cyber threats. This may include • Absence of a general framework 
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issues like input validation errors, buffer overflows, 

or other vulnerabilities that could be exploited by 

malicious actors. 

of software, what is defects, the reason behind 

writing this paper (problems with defects, bene- 

fits of defect prediction), and the background of 

both the forecast & the finding of defects. The 

problems with SDPs are also discussed in this 

section. 

The second section is the background section 

for the dataset and used algorithms. In this 

section, we have discussed all the datasets and 

algorithms (SVM, RB, NB, and PCA) we use 

for SDP analysis. The List of all available algo- 

rithms of ML and the general flow of SDP is 

also given in this section. 

The third section is for SLR. Based on this SLR 

which process we have used for SDP is also 

discussed in this third section. Based on SLR 

we saw the difference between conventional and 

predictive approaches of SDP. These differences 

are also discussed in this section. 

In the Fourth section, we discussed why we use 

SDP, the flow of SDP, the process, and the used 

steps for the SDP. We can see the pictorial rep- 

resentation of the used process of SDP in Figure 

6 in this section. 

Data Loss or Corruption: Defects in data 

processing or storage components can lead to data 

loss or corruption. This is particularly problematic 

when dealing with sensitive or critical information. 

System Crashes: Severe defects can cause 

the entire software system to crash. This disrupts 

the normal operation of the software and can lead 

to data loss or downtime. 

Delayed Timelines: Identifying and fixing 

defects can consume a significant amount of time 

and resources. This may lead to project delays and 

impact the overall timeline for software develop- 

ment. 

Increased Costs: The process of identify- 

ing, fixing, and retesting defects can contribute to 

increased development costs. Additionally, defects 

discovered later in the development cycle or after 

release can be more expensive to address. 

Reputation Damage: Defects that affect the 

user experience or result in critical issues can harm 

the reputation of the software and the develop- 

ment team. Users may lose trust in the product, 

and negative reviews can impact future adoption. 

Difficulty in Reproduction: Some defects 

may be challenging to reproduce consistently, 

making it difficult for developers to identify the 

root cause and implement a fix. 

Communication Challenges: Defects can 

lead to misunderstandings and communication 

challenges between development teams, quality 

assurance (QA) teams, and stakeholders. Clear 

communication is crucial for effective defect reso- 

lution. 

• 

• 

• 

• The Fifth section is for results and discussion. 

The result set of the algorithms on the used 

datasets is also mentioned in this section which 

we can see in “Table-2, Table-3, Table-4, Table- 

5, Table-6, and Table-7” with bar charts of all 

the tables. In this section, we discussed result 

sets and compared all the datasets and saw that 

after using PCA results of all the algorithms 

have been increased. 
• The sixth section is for the conclusion. 

2 Background 
To mitigate these problems, it’s essential to 

implement robust testing processes, conduct thor- 

ough code reviews, and prioritize continuous inte- 

gration and continuous testing practices through- 

out the software development lifecycle. Addition- 

ally, fostering a culture of quality and collab- 

oration within the development team can help 

address and prevent defects more effectively. 

In modern times, the software industry is grow- 

ing and becoming more advanced. As we know we 

are highly dependent on the software. This soft- 

ware must be defect-free, effective, highly secure, 

and reliable. It should have the capability of main- 

tenance according to the user’s requirement and 

should be small in size. According to the definition 

of ANSI, “The possibility that a piece of software 

will operate without errors for a predetermined 

amount of time in a predetermined environment 

is known as software reliability. 

1 .1 Section Introduction 

we divided all our work into six sections in this 

paper which are as follows: 
A bibliometric review [20] indicates that 

researchers worldwide are very interested in the 

topic of SDP. We realize that machine learning 

• The first section is the introduction section. In 

this section we have discussed about importance 
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Fig. 2 Overview of SDP Process 

(ML) techniques are winning nowadays. ML is a 

subset of AI where we provide a large dataset to 

the machine and train it with this dataset to pre- 

dict the output according to the given input. As we 

know SDP is essential. Figure 2 shows an overview 

of the SDP process. To predict the defects prepro- 

cessing of the dataset is very important to analyze 

defects and to identify defects. We can apply dif- 

ferent ML algorithms to train and test the model 

to predict defects. 

Dataset Number of Attributes Number of Records 

CM1 

JM1 

KC1 

MC1 

PC1 

39 

23 

23 

40 

39 

327 

7782 

1183 

1988 

705 

Table 1 Number of attributes and records of the datasets 

automates the data analysis process and instantly 

produces forecasts. ML comes in four varieties 

” Supervised, Semi-supervised, Unsupervised, and 

2 .1 Used Datasets Reinforcement ML”, and many algorithms are 

used in these types to process the data which we 

can see in Figure 3. Among all the algorithms we 

are using SVM, RF, NB, and PCA algorithms for 

analysis of the NASA dataset. 

As of the last update in January 2022, there 

isn’t a specific NASA dataset solely dedicated to 

software defect prediction publicly available and 

officially released by NASA. However, NASA has 

been involved in various research projects related 

to software engineering and defect prediction, and 

some of their datasets might be available through 

collaborations, publications, or research reposito- 

ries. The NASA repository is used in this research 

paper which is available for all researchers of SDP 

for analysis. This repository contains 13 datasets 

with different instances from range 127 to 17001. 

All the datasets contain several attributes from 

the range 20 to 40. We are using five datasets 

In this paper, after preprocessing the dataset 

we divided the data into training and testing and 

used SVM, RF, and NB (GNB, CNB) algorithms 

to calculate the results. After calculating the 

results we applied PCA to decrease the dataset’s 

dimensionality and selected 20 principal compo- 

nents of each dataset for analysis. Based on princi- 

pal components, we created new datasets with 20 

principal components and again applied SVM, RF, 

and NB (GNB, CNB) algorithms to calculate the 

results. The results of all the algorithms increased 

the maximum datasets in the NASA repository. 

Tables 2,3,4,5,6, and 7 show the results of all the 

algorithms on every dataset before using PCA and 

after using PCA. Figure 6 shows the process of 

SDP used in this paper. SVM is a very famous 

supervised ML algorithm used for both “classifi- 

cation and regression” types of problems[1] and 

PCA is a type of unsupervised ML technique to 

reduce the features/dimensionality of the dataset. 

“ MC1, JM1, KC1, CM1, and PC1” of NASA 

repository. The details of the dataset are given in 

Table 1: 

2 .2 Used Algorithms 

ML is very famous among all the 

researchers[6],[7][22]. Large amounts of data 

are automatically analyzed and examined using 

machine learning. Without human involvement, it 
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Fig. 3 Types of ML Algorithms used for SDP 

Fig. 4 Flow Chart of SDP 

PCA facilitates the identification of patterns in 

data, based on the correlation between dimensions 

or features. 

We used SVM with PCA to check the different 

scores of the dataset. We calculated the result of 

SVM without using PCA and after using PCA and 

saw that the score of SVM increased after using 

PCA. We can see all the scores of SVM with the 

datasets in Table 2. 

RF is also a type of supervised ML technique 

that can be used for both “classification” as well 

as “regression”[1]. The RF algorithm is applied to 

the dataset to calculate the score, after this calcu- 

lation, we selected twenty principal components/ 

features of each dataset using PCA, and again 

applied the RF algorithm to the selected compo- 

nents/ features and calculated the result. After 

applying PCA the results were increased which is 
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mentioned in the table. Table 3 shows the scores 

of the RF algorithm on the dataset before and 

after using PCA. Among all algorithms, NB is 

also a type of supervised ML technique which can 

be used for both “classification and regression”. 

Its foundation is the “Bayes Theorem. The most 

efficient and straightforward classification algo- 

rithms are those that aid in the rapid construction 

of machine-learning models with rapid prediction 

capabilities. There are three types of NB model: 

(based on their representativeness and attractive- 

ness) to address the issue of poor industry and 

academic collaboration in software testing. By 

creating and comparing word clouds based on pre- 

sentation titles, the study contrasts the themes 

of certain conferences. The findings reveal con- 

siderable disparities in the academic community’s 

interest in examining theoretical problems and 

looking for solutions to boost practitioners’ test- 

ing efficiency. In addition, the writers give insight 

into the causes behind limited collaboration and 

advise on how to improve in the future. 
• 

• 

• 

Gaussian Naive Bayes – GNB: It is used when 

normal distribution is followed by features. 

Multinomial Nä ıve Bayes – MNB: When the 

data is distributed multinomial, It is used. 

Bernoulli Naive Bayes – BNB: Same as MNB 

but the independent Boolean variables are the 

predictor variables. 

To study specific projected flaws and analyze 

the degree of prediction uncertainty, Bowes et al. 

[ 5] analyze the performance of four ML classifiers. 

The article includes a thorough explanation of the 

background as well as a review of the research 

addressing the influence of dataset properties on 

prediction accuracy. Additionally, it takes into 

account how validation using in vivo datasets is 

crucial and that the great bulk of research is based 

on ”NASA and PROMISE” libraries. 

In this paper, we are using the GNB and BNB 

algorithms of NB to calculate the results before 

and after applying PCA to the dataset. Scores of 

the used datasets before and after applying PCA 

are mentioned in the (MC1, JM1, KC1, CM1, and 

PC1) Table-6. 

By examining the variables that influence soft- 

ware quality and enhancing software-related prod- 

uct and quality, Rawat and Dubey et al. [25] offer 

a variety of approaches for raising software qual- 

ity. They examined a range of complexity and 

size metrics in addition to models including neural 

networks, evolutionary algorithms, and Bayesian 

belief networks, among others. Another excellent 

study was given by Surndha Naidu et al.[18]. The 

article’s main goal was to determine the total 

number of issues to save time and money. Pro- 

gram “length, volume, difficulty, commitment, and 

time estimate” have all been used to classify the 

fault. For this, they used a decision tree classifier. 

They employed the ID3 classification technique to 

categorize faults. After that, they classified flawed 

patterns using a pattern mining technique. They 

implemented the suggested paradigm using Java. 

Software metrics have been used in a variety 

of software defect prediction methods that have 

been suggested [13, 30, 31]. These methods may be 

separated into two categories: unsupervised defect 

prediction methods and supervised defect predic- 

tion methods. Approaches for supervised defect 

prediction that draw on past databases for a defect 

prediction model’s training [30]. Lyu and Guo [13] 

used the stacking generalization technique and the 

pseudoinverse learning method to create a soft- 

ware reliability growth model. Additionally, they 

3 Review of the literature 

To improve the outcomes of SDP, Mahama et al. 

described their work in situations in [3]. They did 

this by utilizing a variety of strategies, includ- 

ing a ranker for dimensionality reduction, data 

sampling for unbalanced data, and an iterative 

partition filter for noise reduction in data. Accord- 

ing to Bisi et al., [12], PCA for feature reduction 

in conjunction with ANN yields more accurate 

findings than Sensitivity Analysis (SA) for scale 

features in conjunction with ANN. 

The possibility of reducing the dimensions of 

input space by eliminating irrelevant measures was 

examined by Rana et al. [24]. When opposed to 

PCA, which chooses features without affecting the 

representation of any feature variable, Information 

Gain may be utilized. Miao et al. [17] investigated 

several cost-sensitive feature selection strategies 

and integrated a cost matrix into FS methods. 

They demonstrated that their suggested work sur- 

passes other conventional procedures in terms of 

cost. 

The study by Garousi and Felderer [9] analyzes 

three industrial and two academic conferences 
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used an SVM (support vector machine) to assess 

the quality of software [? ]. An RF algorithm was 

utilized by Hata et al. [14] to construct a soft- 

ware fault prediction model at the method level 

using method-level stats from the past. Defect 

proneness may be predicted using unsupervised 

defect prediction techniques without the need for a 

fault collection [31]. These methods can be applied 

when a training batch of data is either unavailable 

or inadequate [32]. According to Yang et al. [31], 

an unsupervised method that uses the reciprocal 

of the raw value of each change to rank the change 

metrics in decreasing order measure. 

In this work [15] author compares nine open- 

source Java programs from the PROMISE repos- 

itory for SDP. To do this, the author uses 

four primary feature extraction techniques: “auto- 

encoders, kernel-based principal component anal- 

ysis (K-PCA), PCA, and LDA” along with sup- 

port vector machines (SVM) as the base classifiers 

for ML. Model validation is carried out using 

the ten-fold cross-validation approach, and model 

efficiency is computed using accuracy and ROC- 

AUC. According to the study’s findings, auto- 

encoders are a highly useful method for success- 

fully reducing the software defect dataset’s mea- 

surements of defects. A summary of a few earlier 

SDP research shows the drift and trends in the lit- 

erature on feature extraction and selection in SDP. 

Liu and colleagues [29] investigated the effects 

of around thirty-two feature selection techniques, 

including “filter-based, wrapper-based, clustering- 

based, and extraction-based techniques”, using 

the NASA dataset. A novel feature reduction 

strategy based on Decision tree induction was pro- 

posed by Gayatri et al. [10]. It was compared to 

the RELIEF method and was shown to perform 

better. 

3.1.1 Conventional Approach for SDP 

• Relies on Historical Data: Often uses his- 

torical data of defects from previous projects to 

identify patterns and risks. 

Rule-Based Models: May employ simple 

rule-based models or heuristic approaches based 

on past experiences or expert opinions to pre- 

dict potential defects. 

• 

• 

• 

• 

Manual Inspection and Experience: Relies 

on manual code inspection, experience, and sub- 

jective judgment of developers or testers to 

anticipate potential defect-prone areas. 

Limited Data Analysis: Might lack sophis- 

ticated data analysis techniques and instead 

relies more on domain knowledge and past 

occurrences. 

Limited Scalability: May not handle large 

datasets or complex patterns effectively due 

to reliance on human judgment and simpler 

models. 

3 .1.2 Predictive Approach for SDP 

• Utilizes Machine Learning: Emphasizes the 

use of machine learning algorithms to analyze 

and predict defects based on various software 

metrics, historical data, and patterns. 
• Feature Engineering: Engages in compre- 

hensive feature engineering, selecting relevant 

metrics and potentially generating new features 

to enhance prediction accuracy. 
• Quantitative Analysis: Focuses on statisti- 

cal and quantitative analysis of data to iden- 

tify correlations and patterns related to defect 

occurrence. 
• Automated Prediction: Leverages auto- 

mated models that continuously learn and 

adapt, making predictions based on updated 

data. 

Scalability and Accuracy: Often exhibits 

better scalability and accuracy, especially with 

large and diverse datasets, due to the capabili- 

ties of machine learning algorithms. 

• 3 .1 Conventional Vs Predictive 

Approaches for SDP 

When comparing the traditional and predictive 

approaches specifically within the context of soft- 

ware defect prediction, there are key differences in 

their methodologies and effectiveness: 
3 .1.3 Comparison between 

conventional and predictive 

approaches 

• Accuracy 

approaches, especially machine learning-based 

and Precision: Predictive 
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software development costs and increase the qual- 

ity of the software. So With the help of SDP, we 

can do the following: 

• 

• 

• 

• 

Find the software bugs in the early stage 

Allocate the test resources efficiently 

Minimize the development cost of software 

Boost the software’s ‘productivity and quality’ 

4 .1 Flow of SDP 

Dataset plays a crucial role in any kind of pre- 

diction. It contains all the details of the software 

and its modules. After preprocessing the dataset 

we can divide this data set for training and testing 

into 70 X 30,75 X 25 or 80 X 20 ratios to train and 

test our module of your software. We find defects 

in the module if the module is defective then we 

can try to fix this defect. After fixing this defect 

problem we can again test whether the module is 

defective or not, if it is defective again we can find 

the solution to the defect, after applying this solu- 

tion to the module we can again test the module. 

We can do this process again and again until we 

get a defect-free module. This is the general flow 

to SDP which will take several time to process. 

This phase of testing is very costly and takes a lot 

of time. Figure 4 shows the general flow of SDP. 

Fig. 

Approaches 

5 Difference among Conventional and Predictive 

methods, tend to offer higher accuracy and pre- 

cision in identifying potential defects compared 

to traditional approaches. 
• 

• 

Data Processing: Predictive approaches 

involve more sophisticated data processing and 

analysis techniques, allowing for a deeper under- 

standing of patterns related to defects. 

Adaptability: Predictive approaches are more 

adaptable and can evolve over time with new 

data and improved models, while traditional 

approaches might be limited by static rules or 

heuristics. 

Automation: Predictive approaches often 

automate the defect prediction process, reduc- 

ing the reliance on manual inspection and 

subjective judgment. 

4 .2 Used Process or Steps for SDP 

• Figure 6 shows the whole process of SDP that 

we are using. To calculate the result we are using 

the ”CM1, JM1, KC1, MC1, PC1” dataset of the 

NASA repository. For better results, it is impor- 

tant to preprocess the dataset. Preprocessing in 

dataset preparation for ML involves a series of 

steps to clean, transform, and prepare the data 

before feeding it into a ML model. The goal is 

to improve the quality of the data and enhance 

the model’s ability to learn patterns and make 

accurate predictions. 

After preprocessing we divided the dataset for 

training and testing (for training 80 percent and 

for testing 20 percent), then applied SVM, RF, 

and NB (GNB, CNB) algorithms to calculate the 

results. After calculating the results we applied 

PCA to decrease the dataset’s dimensionality and 

selected 20 principal components of each dataset 

for analysis. Based on principal components, we 

created new datasets with 20 principal compo- 

nents and again applied SVM, RF, and NB (GNB, 

4 Why we use SDP ? 

SDP is mainly described as a back-down from the 

requirement or specification of software [8]. To 

improve the quality of software and reduce failures 

we can perform unit testing, code review or defect 

prediction, etc. These activities are also known 

as quality assurance activities. The cost of these 

activities is approximately 75 to 80 percent of the 

overall budget of a project [21]. If we want to 

reduce the cost, we must find the defective mod- 

ules first. For this, SDP has been introduced [19]. 

If we can predict defects of software we can reduce 
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Fig. 6 SDP Process 

CNB) algorithms to calculate the results. The 

results of all the algorithms increased on every 

dataset of the NASA repository. Tables 5, 6, 7, 8, 

9 , and 10 show the results of all the algorithms on 

every dataset before using PCA and after using 

PCA. 

5 Result and Discussion 

We have calculated the result of various used 

datasets by applying all the selected algorithms 

and the following results are obtained: 

5 .1 Result of SVM Fig. 7 Result of SVM with and without using PCA 

We have calculated the results of various used 

datasets by applying the SVM algorithm and the 

above results are obtained. The detailed analysis 

says: 

• 

• 

• 

CM1 dataset- when we applied the SVM (Sup- 

port Vector Machine) algorithm on the CM1 

dataset we obtained a 0.86 result but when we 

used PCA (Principal component analysis) on 

the result, the result increased to 0.98. We have 

seen a growth of 0.12 in the data. 

JM1 dataset- when we applied the SVM (Sup- 

port Vector Machine) algorithm on the JM1 

data set we obtained a 0.78 the result but when 

we used PCA (Principal Component Analysis) 

on the result, the result increased to 1.00. We 

have seen a growth of 0.22 in the data. 

Used Used 

Algorithm Dataset 

Result Without Result After 

Using PCA Using PCA 

CM1 

JM1 

KC1 

MC1 

PC1 

0.86 

0.78 

0.74 

0.97 

0.89 

0.98 

1.00 

0.99 

1.00 

0.99 

SVM 

Table 2 Result of SVM before and after using PCA 

KC1 dataset- when we applied the SVM algo- 

rithm on the KC1 data set we obtained 0.74 

as the result but when we used PCA (Principal 
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Component Analysis) on the result, the result 

increased to 0.99 we saw a growth of 0.25 in the 

data. 

MC1 dataset- On the MC1 data set when we 

applied the SVM algorithm we obtained 0.97 as 

the result but when we used the PCA (Princi- 

pal component Analysis) result, the result got 

increased to 1.00 which shows a growth of 0.03 

in the data. 

PC1 dataset- using the SVM algorithm we 

obtained 0.89 as the result but when we used 

PCA (Principal Component Analysis) on the 

result, it increased to 0.99 which shows a growth 

of 0.10 in the result. 

• 

• 

Fig. 8 Result of RF with and without using PCA 

Based on these result sets we prepared a bar chart 

to visualize the result, which we can see in Figure • PC1 dataset- On applying the RF algorithm on 

the given data set the result remains 1.00 but 

after using PCA on it, it decreased to 0.96 which 

shows a decrease of 0.04. 

7 . 

5 .2 Result of RF 

We have calculated the results of various used 

datasets by applying the RF algorithm and the 

above results are obtained. The detailed analysis 

says: 

Based on these result sets we prepared a bar chart 

to visualize the result, which we can see in Figure 

8. 

5 .3 Result of GNB 
Used Used 

Algorithm Dataset 

Result Without Result After 

Using PCA Using PCA We have calculated the results of various used 

datasets by applying the GNB algorithm and the 

above results are obtained. The detailed analysis 

says: 

CM1 

JM1 

0.98 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.98 

1.00 

0.96 

RF KC1 

MC1 

PC1 

Used Used 

Algorithm Dataset 

Result Without Result After 

Using PCA Using PCA Table 3 Result of RF before and after using PCA 

CM1 

JM1 

KC1 

MC1 

PC1 

0.85 

0.78 

0.74 

0.96 

0.84 

0.97 

0.86 

0.82 

0.97 

0.95 

GNB 
• 

• 

CM1 dataset- Also applying the RF (Random 

Forest) algorithm on the same data set we got 

the result 0.98 but when we used PCA on the 

same it got increased to 1.00 which shows a 

growth of 0.02 in the result. 

JM1 dataset- Applying the RF algorithm on the 

given data set we got 1.00 as the result. But 

after applying PCA to the result it doesn’t get 

changed, it remains constant. 

KC1 dataset- Also applying the RF algorithm 

on the given data set the result remains 1.00 but 

after using PCA it decreased to 0.98. 

MC1 dataset- Applying the RF algorithm on 

the given data set the result remains 1.00 before 

and after using PCA on the given data set. 

Table 4 Result of GNB before and after using PCA 

• 

• 

CM1 Dataset- When we apply the GNB algo- 

rithm on the CM1 dataset the result we 

obtained is 0.85 and after using PCA the result 

we get is 0.97. Here we observed that after using 

PCA the result increased by 0.12. 

JM1 Dataset - When we apply the GNB algo- 

rithm on the JM1 dataset we get 0.78 as a result 

but after using PCA the result increased to 0.86. 

Here we see that after using PCA the result 

increased by 0.8. 

• 

• 
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Fig. 9 Result of GNB with and without using PCA Fig. 10 Result of BNB with and without using PCA 

• 

• 

• 

• 

• 

• 

• 

• 

KC1 Dataset - When we apply the GNB algo- 

rithm on the KC1 dataset the result we obtained 

is 0.74 after using PCA the result we get is 

0.82. Here we observed that after using PCA the 

result is increased by 0.8. 

MC1 Dataset - When we apply the GNB algo- 

rithm on the MC1 dataset we get 0.96 as a 

result but after using PCA the result increased 

to 0.97. Here after using PCA, we observed a 

small increment in the result by 0.1. 

PC1 Dataset - When we apply the GNB algo- 

rithm on the PC1 dataset the result we obtained 

is 0.84 after using PCA the result we get is 

CM1 Dataset- When we apply the BNB algo- 

rithm on the CM1 dataset the result we get 

is 1.00 after using PCA the result decreased 

to 0.97. Here we see that after using PCA the 

result decreased by 0.3. 

JM1 Dataset- When the BNB algorithm is 

applied to the JM1 dataset the result we 

obtained is 1.00 but after using PCA we get 

0.96. Here we see that after using PCA the 

result decreased by 0.4. 

KC1 Dataset - When the BNB algorithm is 

applied to the KC1 dataset the result we 

obtained is 1.00 but after using PCA, we get 

0.96. This means after using PCA the result 

decreased by 0.4 again. 

MC1 Dataset - When the BNB algorithm is 

applied to the MC1 dataset the result we 

obtained is 1.00 after using PCA we get the 

same result 1.00. This means before and after 

using PCA the result was not changed. 

PC1 Dataset - is BNB algorithm on PC1 dataset 

the result we get is 1.00 after using PCA the 

result decreased to 0.96. 

0.95. Here we observed that after using PCA the 

result increased by 0.11. 

Based on these result sets we prepared a bar chart 

to visualize the result, which we can see in Figure 

9 

5 .4 Result of BNB 

We have calculated the results of various used 

datasets by applying the BNB algorithm and the 

above results are obtained. The detailed analysis 

says: 
Based on the results of BNB we prepared a 

bar chart to visualize the result which is given in 

Figure 10. For better analysis of the results of all 

the selected algorithms over the selected dataset, 

we calculated bar charts that show the results of 

the ”SVM, RF, GNB, and BNB” algorithms over 

the ”CM1 dataset” in Figure 11. The results of 

the ”SVM, RF, GNB, and BNB” algorithms over 

the ”JM1 dataset” are displayed in Figure 12; the 

same as the results over the ”KC1 dataset” are 

displayed in Figure 13; the results over the ”MC1 

Used Used 

Algorithm Dataset 

Result Without Result After 

Using PCA Using PCA 

CM1 

JM1 

1.00 

1.00 

1.00 

1.00 

1.00 

0.97 

0.96 

0.96 

1.00 

0.96 

BNB KC1 

MC1 

PC1 

Table 5 Result of BNB before and after using PCA 
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Fig. 14 Result of SVM, RB, and NB on dataset MC1 

before using PCA Fig. 11 Result of SVM, RB, and NB on dataset CM1 

before using PCA 

Fig. 15 Result of SVM, RB, and NB on dataset PC1 

before using PCA 
Fig. 12 Result of SVM, RB, and NB on dataset JM1 

before using PCA 

dataset” are displayed in Figure 14; and the results 

over the ”MC1 dataset” are displayed in Figure 

1 5. Figure 16, and Figure 17 show the results of 

selected algorithms over selected datasets before 

the selection of principal components and after the 

selection of principal components. 

Based on the result we observed that the selec- 

tion of a good dataset is one part, and the selection 

of the dependent and independent variable of the 

dataset is another part of a good result. In this 

work, the “MC1, JM1, KC1, CM1, and PC1” 

datasets we use from the NASA repository for 

analysis. And calculated results using SVM, RF, 

GNB, and BNB algorithms of the NB algorithm. 

We used the PCA algorithm for dimensionality 

reduction of the dataset. The process of removing 

variables from a training dataset to create machine 
Fig. 13 Result of SVM, RB, and NB on dataset KC1 

before using PCA 
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the KC1 dataset, and from 1.00 to .96 on the PC1 

dataset. Only the results of dataset MC1 were not 

changed it was 1.00 before applying PCA and after 

applying it was still 1.00. 

6 Conclusion 

Defect-free software is constantly desired to min- 

imize testing costs and maintain software quality 

for customer satisfaction. SDP is a technique used 

in software engineering to anticipate or predict 

the presence of defects, bugs, or issues before a 

software system is made public. In this paper, we 

analyzed and compared five datasets “MC1, JM1, 

KC1, CM1, and PC1” of the NASA repository. At 

first, We used SVM, RF, GNB, and BNB algo- 

rithms of NB algorithms to calculate the result 

of each dataset. We used PCA for dimensional- 

ity reduction and calculated the result before and 

after applying PCA to all the algorithms. Based 

on the results we can say that if we use the PCA 

algorithm on the ”CM1, JM1, KC1, MC1, and 

PC1” dataset and again apply SVM, RF, GNB 

Fig. 16 Result of SVM, RB, and NB before using PCA 

& BNB algorithms the results of GNB and SVM 

algorithms will be increased. 

Fig. 17 Result of SVM, RB, and NB after using PCA 

7 Declaration of interests 
learning models is known as ”dimensionality 

reduction”. We observed that when we applied the 

SVM algorithm to the selected datasets results 

were 0.86, 0.78, 0.74, 0.97, 0.89. But when we 

applied the PCA algorithm to the dataset and on 

the calculated dimensions when we again applied 

the SVM algorithm, results were increased to 0.98, 
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in this study may have been influenced by any 
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