

4224

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Software Defect Prediction using Dimensionality
Reduction Technique

Bhanu Pratap Rai, C. S. Raghuvanshi, Hari Om Sharan

Faculty of Engineering & Technology, Rama University, Mandhana,
Kanpur, 209217, U.P., India.

Abstract

The software system has a huge amount of programming codes, several procedures, and modules. Due

to this, it is too complex to understand. For the better experience of the user, software must be running

efficiently. If any module gets any type of defect, it may harm the field of health care, defense, educa-

tion, and so on. It can also be expensive in terms of money, effort, and reputation for a company. It is

very tedious work to identify the defects in the module. To allot resources efficiently, reduce costs, and

enhance the performance of software, the prediction of defective software is very necessary and it may

help developers to save time and reduce the development cost. In the testing phase of software, we get

most of the defects which reduces the quality of the software. According to the report (Herb Krasner),

the testing phase takes more time as compared to other phases and takes more than 50 percent cost of

the software where finding and fixing the defect takes place. This paper uses five datasets “MC1, JM1,

KC1, CM1, and PC1” of the NASA repository for analysis. This repository contains 13 datasets with

different instances from range 127 to 17001. Firstly, we use a Support Vector Machine (SVM), Random

Forest (RF), and two Nä ıve Bays (NB) algorithms namely Gaussian Naive Bayes (GNB) and Bernoulli

Naive Bayes (BNB) to calculate the results for each dataset. Secondly, we use PCA for dimensionality

reduction and calculate the results before and after applying PCA to all aforementioned algorithms.

Finally, we observe that after using PCA, the results of all the algorithms have been improved.

Keywords: Machine Learning, Software Defect Prediction, Dimensionality Reduction, Principle Component

Analysis

1 Introduction SDP aims to oblige software professionals to allo-

cate test resources more efficiently[28]. Using SDP

approaches, errors are found early in the ”software

development life cycle” (SDLC)[4][23]. It involves

the use of historical data, metrics, and various

algorithms to create models that can identify areas

of code or modules that are more likely to con-

tain defects. This process requires a combined

effort of all software development teams for ana-

lyzing, planning, testing, and execution. In the

It is a challenging process to develop qual-

ity software that can fulfill users’ requirements.

Removing errors or flaws in software is the pri-

mary factor that determines its dependability and

quality[11][27]. Software defect prediction(SDP) is

a technique used in software engineering to antic-

ipate or predict the presence of defects, bugs, or

issues in a software system before it is released.

1

*Corresponding author(s). E-mail(s): bhanurai0@gmail.com;

4225

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Fig. 1 Iceberg Model for SDP

•

•

•

•

testing phase, we get most of the defects which

reduce the quality of the software. According to

There are no standard performance measures

The connection between fault and attributes

Problems in predicting cross-project [16][26], the testing phase takes more time and

more than 50 percent cost of the software, where

finding and fixing the defect takes place. How-

ever, there is a correlation between the Iceberg

model [16] and the overall cost of software deliv-

ery, which is not always visible. Another paper of

Anon 2018a (Software fails watch) which was pub-

lished in Tricentis, examined 606 famous software

failures. This paper reported that 314 companies

were involved in this analysis, assets worth $1.7

trillion, and 3.8 billion people were affected.

Several old and new methods have been used

by researchers in the last few years for SDP like

manual testing, automation, static analysis, and

AI approaches. Some of the techniques take lots

of time, but some of them are very fast, some of

them do not require historical datasets but in some

approaches, we need historical datasets. We can

see the differences among all of them in Figure 5.

In this field of SDP, researchers have found sev-

eral issues and attempted to provide solutions.

However, no solution by the researchers has been

accepted universally. Several problems are still

unanswered [2]. The problems of the SDP are as

follows:

The Economics of Predicting Software Defects

Several experiences have shown that the use of

defective software hurts the business. Suppose we

take an example of a defective life-critical system

software of any hospital. It is very dangerous to

use. This could even kill someone. Critical busi-

ness applications need reliable software, and it is

the main challenge for the development team of

the software industry. It can lead to various issues

and challenges throughout the software develop-

ment lifecycle. Here are some common problems

associated with defects in software:

Functional Issues: Defects can cause the

software to behave unexpectedly or fail to perform

specific functions as intended. This can result in

incorrect calculations, data processing errors, or

other functional issues.

User Experience Problems: Defects can

impact the user interface, making it difficult for

users to interact with the software. This may lead

to frustration, confusion, and a poor overall user

experience.

Security Vulnerabilities: Some defects can

create security vulnerabilities, exposing the soft-

ware to potential cyber threats. This may include • Absence of a general framework

4226

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

issues like input validation errors, buffer overflows,

or other vulnerabilities that could be exploited by

malicious actors.

of software, what is defects, the reason behind

writing this paper (problems with defects, bene-

fits of defect prediction), and the background of

both the forecast & the finding of defects. The

problems with SDPs are also discussed in this

section.

The second section is the background section

for the dataset and used algorithms. In this

section, we have discussed all the datasets and

algorithms (SVM, RB, NB, and PCA) we use

for SDP analysis. The List of all available algo-

rithms of ML and the general flow of SDP is

also given in this section.

The third section is for SLR. Based on this SLR

which process we have used for SDP is also

discussed in this third section. Based on SLR

we saw the difference between conventional and

predictive approaches of SDP. These differences

are also discussed in this section.

In the Fourth section, we discussed why we use

SDP, the flow of SDP, the process, and the used

steps for the SDP. We can see the pictorial rep-

resentation of the used process of SDP in Figure

6 in this section.

Data Loss or Corruption: Defects in data

processing or storage components can lead to data

loss or corruption. This is particularly problematic

when dealing with sensitive or critical information.

System Crashes: Severe defects can cause

the entire software system to crash. This disrupts

the normal operation of the software and can lead

to data loss or downtime.

Delayed Timelines: Identifying and fixing

defects can consume a significant amount of time

and resources. This may lead to project delays and

impact the overall timeline for software develop-

ment.

Increased Costs: The process of identify-

ing, fixing, and retesting defects can contribute to

increased development costs. Additionally, defects

discovered later in the development cycle or after

release can be more expensive to address.

Reputation Damage: Defects that affect the

user experience or result in critical issues can harm

the reputation of the software and the develop-

ment team. Users may lose trust in the product,

and negative reviews can impact future adoption.

Difficulty in Reproduction: Some defects

may be challenging to reproduce consistently,

making it difficult for developers to identify the

root cause and implement a fix.

Communication Challenges: Defects can

lead to misunderstandings and communication

challenges between development teams, quality

assurance (QA) teams, and stakeholders. Clear

communication is crucial for effective defect reso-

lution.

•

•

•

• The Fifth section is for results and discussion.

The result set of the algorithms on the used

datasets is also mentioned in this section which

we can see in “Table-2, Table-3, Table-4, Table-

5, Table-6, and Table-7” with bar charts of all

the tables. In this section, we discussed result

sets and compared all the datasets and saw that

after using PCA results of all the algorithms

have been increased.
• The sixth section is for the conclusion.

2 Background
To mitigate these problems, it’s essential to

implement robust testing processes, conduct thor-

ough code reviews, and prioritize continuous inte-

gration and continuous testing practices through-

out the software development lifecycle. Addition-

ally, fostering a culture of quality and collab-

oration within the development team can help

address and prevent defects more effectively.

In modern times, the software industry is grow-

ing and becoming more advanced. As we know we

are highly dependent on the software. This soft-

ware must be defect-free, effective, highly secure,

and reliable. It should have the capability of main-

tenance according to the user’s requirement and

should be small in size. According to the definition

of ANSI, “The possibility that a piece of software

will operate without errors for a predetermined

amount of time in a predetermined environment

is known as software reliability.

1 .1 Section Introduction

we divided all our work into six sections in this

paper which are as follows:
A bibliometric review [20] indicates that

researchers worldwide are very interested in the

topic of SDP. We realize that machine learning

• The first section is the introduction section. In

this section we have discussed about importance

4227

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Fig. 2 Overview of SDP Process

(ML) techniques are winning nowadays. ML is a

subset of AI where we provide a large dataset to

the machine and train it with this dataset to pre-

dict the output according to the given input. As we

know SDP is essential. Figure 2 shows an overview

of the SDP process. To predict the defects prepro-

cessing of the dataset is very important to analyze

defects and to identify defects. We can apply dif-

ferent ML algorithms to train and test the model

to predict defects.

Dataset Number of Attributes Number of Records

CM1

JM1

KC1

MC1

PC1

39

23

23

40

39

327

7782

1183

1988

705

Table 1 Number of attributes and records of the datasets

automates the data analysis process and instantly

produces forecasts. ML comes in four varieties

” Supervised, Semi-supervised, Unsupervised, and

2 .1 Used Datasets Reinforcement ML”, and many algorithms are

used in these types to process the data which we

can see in Figure 3. Among all the algorithms we

are using SVM, RF, NB, and PCA algorithms for

analysis of the NASA dataset.

As of the last update in January 2022, there

isn’t a specific NASA dataset solely dedicated to

software defect prediction publicly available and

officially released by NASA. However, NASA has

been involved in various research projects related

to software engineering and defect prediction, and

some of their datasets might be available through

collaborations, publications, or research reposito-

ries. The NASA repository is used in this research

paper which is available for all researchers of SDP

for analysis. This repository contains 13 datasets

with different instances from range 127 to 17001.

All the datasets contain several attributes from

the range 20 to 40. We are using five datasets

In this paper, after preprocessing the dataset

we divided the data into training and testing and

used SVM, RF, and NB (GNB, CNB) algorithms

to calculate the results. After calculating the

results we applied PCA to decrease the dataset’s

dimensionality and selected 20 principal compo-

nents of each dataset for analysis. Based on princi-

pal components, we created new datasets with 20

principal components and again applied SVM, RF,

and NB (GNB, CNB) algorithms to calculate the

results. The results of all the algorithms increased

the maximum datasets in the NASA repository.

Tables 2,3,4,5,6, and 7 show the results of all the

algorithms on every dataset before using PCA and

after using PCA. Figure 6 shows the process of

SDP used in this paper. SVM is a very famous

supervised ML algorithm used for both “classifi-

cation and regression” types of problems[1] and

PCA is a type of unsupervised ML technique to

reduce the features/dimensionality of the dataset.

“ MC1, JM1, KC1, CM1, and PC1” of NASA

repository. The details of the dataset are given in

Table 1:

2 .2 Used Algorithms

ML is very famous among all the

researchers[6],[7][22]. Large amounts of data

are automatically analyzed and examined using

machine learning. Without human involvement, it

4228

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Fig. 3 Types of ML Algorithms used for SDP

Fig. 4 Flow Chart of SDP

PCA facilitates the identification of patterns in

data, based on the correlation between dimensions

or features.

We used SVM with PCA to check the different

scores of the dataset. We calculated the result of

SVM without using PCA and after using PCA and

saw that the score of SVM increased after using

PCA. We can see all the scores of SVM with the

datasets in Table 2.

RF is also a type of supervised ML technique

that can be used for both “classification” as well

as “regression”[1]. The RF algorithm is applied to

the dataset to calculate the score, after this calcu-

lation, we selected twenty principal components/

features of each dataset using PCA, and again

applied the RF algorithm to the selected compo-

nents/ features and calculated the result. After

applying PCA the results were increased which is

4229

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

mentioned in the table. Table 3 shows the scores

of the RF algorithm on the dataset before and

after using PCA. Among all algorithms, NB is

also a type of supervised ML technique which can

be used for both “classification and regression”.

Its foundation is the “Bayes Theorem. The most

efficient and straightforward classification algo-

rithms are those that aid in the rapid construction

of machine-learning models with rapid prediction

capabilities. There are three types of NB model:

(based on their representativeness and attractive-

ness) to address the issue of poor industry and

academic collaboration in software testing. By

creating and comparing word clouds based on pre-

sentation titles, the study contrasts the themes

of certain conferences. The findings reveal con-

siderable disparities in the academic community’s

interest in examining theoretical problems and

looking for solutions to boost practitioners’ test-

ing efficiency. In addition, the writers give insight

into the causes behind limited collaboration and

advise on how to improve in the future.
•

•

•

Gaussian Naive Bayes – GNB: It is used when

normal distribution is followed by features.

Multinomial Nä ıve Bayes – MNB: When the

data is distributed multinomial, It is used.

Bernoulli Naive Bayes – BNB: Same as MNB

but the independent Boolean variables are the

predictor variables.

To study specific projected flaws and analyze

the degree of prediction uncertainty, Bowes et al.

[5] analyze the performance of four ML classifiers.

The article includes a thorough explanation of the

background as well as a review of the research

addressing the influence of dataset properties on

prediction accuracy. Additionally, it takes into

account how validation using in vivo datasets is

crucial and that the great bulk of research is based

on ”NASA and PROMISE” libraries.

In this paper, we are using the GNB and BNB

algorithms of NB to calculate the results before

and after applying PCA to the dataset. Scores of

the used datasets before and after applying PCA

are mentioned in the (MC1, JM1, KC1, CM1, and

PC1) Table-6.

By examining the variables that influence soft-

ware quality and enhancing software-related prod-

uct and quality, Rawat and Dubey et al. [25] offer

a variety of approaches for raising software qual-

ity. They examined a range of complexity and

size metrics in addition to models including neural

networks, evolutionary algorithms, and Bayesian

belief networks, among others. Another excellent

study was given by Surndha Naidu et al.[18]. The

article’s main goal was to determine the total

number of issues to save time and money. Pro-

gram “length, volume, difficulty, commitment, and

time estimate” have all been used to classify the

fault. For this, they used a decision tree classifier.

They employed the ID3 classification technique to

categorize faults. After that, they classified flawed

patterns using a pattern mining technique. They

implemented the suggested paradigm using Java.

Software metrics have been used in a variety

of software defect prediction methods that have

been suggested [13, 30, 31]. These methods may be

separated into two categories: unsupervised defect

prediction methods and supervised defect predic-

tion methods. Approaches for supervised defect

prediction that draw on past databases for a defect

prediction model’s training [30]. Lyu and Guo [13]

used the stacking generalization technique and the

pseudoinverse learning method to create a soft-

ware reliability growth model. Additionally, they

3 Review of the literature

To improve the outcomes of SDP, Mahama et al.

described their work in situations in [3]. They did

this by utilizing a variety of strategies, includ-

ing a ranker for dimensionality reduction, data

sampling for unbalanced data, and an iterative

partition filter for noise reduction in data. Accord-

ing to Bisi et al., [12], PCA for feature reduction

in conjunction with ANN yields more accurate

findings than Sensitivity Analysis (SA) for scale

features in conjunction with ANN.

The possibility of reducing the dimensions of

input space by eliminating irrelevant measures was

examined by Rana et al. [24]. When opposed to

PCA, which chooses features without affecting the

representation of any feature variable, Information

Gain may be utilized. Miao et al. [17] investigated

several cost-sensitive feature selection strategies

and integrated a cost matrix into FS methods.

They demonstrated that their suggested work sur-

passes other conventional procedures in terms of

cost.

The study by Garousi and Felderer [9] analyzes

three industrial and two academic conferences

4230

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

used an SVM (support vector machine) to assess

the quality of software [?]. An RF algorithm was

utilized by Hata et al. [14] to construct a soft-

ware fault prediction model at the method level

using method-level stats from the past. Defect

proneness may be predicted using unsupervised

defect prediction techniques without the need for a

fault collection [31]. These methods can be applied

when a training batch of data is either unavailable

or inadequate [32]. According to Yang et al. [31],

an unsupervised method that uses the reciprocal

of the raw value of each change to rank the change

metrics in decreasing order measure.

In this work [15] author compares nine open-

source Java programs from the PROMISE repos-

itory for SDP. To do this, the author uses

four primary feature extraction techniques: “auto-

encoders, kernel-based principal component anal-

ysis (K-PCA), PCA, and LDA” along with sup-

port vector machines (SVM) as the base classifiers

for ML. Model validation is carried out using

the ten-fold cross-validation approach, and model

efficiency is computed using accuracy and ROC-

AUC. According to the study’s findings, auto-

encoders are a highly useful method for success-

fully reducing the software defect dataset’s mea-

surements of defects. A summary of a few earlier

SDP research shows the drift and trends in the lit-

erature on feature extraction and selection in SDP.

Liu and colleagues [29] investigated the effects

of around thirty-two feature selection techniques,

including “filter-based, wrapper-based, clustering-

based, and extraction-based techniques”, using

the NASA dataset. A novel feature reduction

strategy based on Decision tree induction was pro-

posed by Gayatri et al. [10]. It was compared to

the RELIEF method and was shown to perform

better.

3.1.1 Conventional Approach for SDP

• Relies on Historical Data: Often uses his-

torical data of defects from previous projects to

identify patterns and risks.

Rule-Based Models: May employ simple

rule-based models or heuristic approaches based

on past experiences or expert opinions to pre-

dict potential defects.

•

•

•

•

Manual Inspection and Experience: Relies

on manual code inspection, experience, and sub-

jective judgment of developers or testers to

anticipate potential defect-prone areas.

Limited Data Analysis: Might lack sophis-

ticated data analysis techniques and instead

relies more on domain knowledge and past

occurrences.

Limited Scalability: May not handle large

datasets or complex patterns effectively due

to reliance on human judgment and simpler

models.

3 .1.2 Predictive Approach for SDP

• Utilizes Machine Learning: Emphasizes the

use of machine learning algorithms to analyze

and predict defects based on various software

metrics, historical data, and patterns.
• Feature Engineering: Engages in compre-

hensive feature engineering, selecting relevant

metrics and potentially generating new features

to enhance prediction accuracy.
• Quantitative Analysis: Focuses on statisti-

cal and quantitative analysis of data to iden-

tify correlations and patterns related to defect

occurrence.
• Automated Prediction: Leverages auto-

mated models that continuously learn and

adapt, making predictions based on updated

data.

Scalability and Accuracy: Often exhibits

better scalability and accuracy, especially with

large and diverse datasets, due to the capabili-

ties of machine learning algorithms.

• 3 .1 Conventional Vs Predictive

Approaches for SDP

When comparing the traditional and predictive

approaches specifically within the context of soft-

ware defect prediction, there are key differences in

their methodologies and effectiveness:
3 .1.3 Comparison between

conventional and predictive

approaches

• Accuracy

approaches, especially machine learning-based

and Precision: Predictive

4231

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

software development costs and increase the qual-

ity of the software. So With the help of SDP, we

can do the following:

•

•

•

•

Find the software bugs in the early stage

Allocate the test resources efficiently

Minimize the development cost of software

Boost the software’s ‘productivity and quality’

4 .1 Flow of SDP

Dataset plays a crucial role in any kind of pre-

diction. It contains all the details of the software

and its modules. After preprocessing the dataset

we can divide this data set for training and testing

into 70 X 30,75 X 25 or 80 X 20 ratios to train and

test our module of your software. We find defects

in the module if the module is defective then we

can try to fix this defect. After fixing this defect

problem we can again test whether the module is

defective or not, if it is defective again we can find

the solution to the defect, after applying this solu-

tion to the module we can again test the module.

We can do this process again and again until we

get a defect-free module. This is the general flow

to SDP which will take several time to process.

This phase of testing is very costly and takes a lot

of time. Figure 4 shows the general flow of SDP.

Fig.

Approaches

5 Difference among Conventional and Predictive

methods, tend to offer higher accuracy and pre-

cision in identifying potential defects compared

to traditional approaches.
•

•

Data Processing: Predictive approaches

involve more sophisticated data processing and

analysis techniques, allowing for a deeper under-

standing of patterns related to defects.

Adaptability: Predictive approaches are more

adaptable and can evolve over time with new

data and improved models, while traditional

approaches might be limited by static rules or

heuristics.

Automation: Predictive approaches often

automate the defect prediction process, reduc-

ing the reliance on manual inspection and

subjective judgment.

4 .2 Used Process or Steps for SDP

• Figure 6 shows the whole process of SDP that

we are using. To calculate the result we are using

the ”CM1, JM1, KC1, MC1, PC1” dataset of the

NASA repository. For better results, it is impor-

tant to preprocess the dataset. Preprocessing in

dataset preparation for ML involves a series of

steps to clean, transform, and prepare the data

before feeding it into a ML model. The goal is

to improve the quality of the data and enhance

the model’s ability to learn patterns and make

accurate predictions.

After preprocessing we divided the dataset for

training and testing (for training 80 percent and

for testing 20 percent), then applied SVM, RF,

and NB (GNB, CNB) algorithms to calculate the

results. After calculating the results we applied

PCA to decrease the dataset’s dimensionality and

selected 20 principal components of each dataset

for analysis. Based on principal components, we

created new datasets with 20 principal compo-

nents and again applied SVM, RF, and NB (GNB,

4 Why we use SDP ?

SDP is mainly described as a back-down from the

requirement or specification of software [8]. To

improve the quality of software and reduce failures

we can perform unit testing, code review or defect

prediction, etc. These activities are also known

as quality assurance activities. The cost of these

activities is approximately 75 to 80 percent of the

overall budget of a project [21]. If we want to

reduce the cost, we must find the defective mod-

ules first. For this, SDP has been introduced [19].

If we can predict defects of software we can reduce

4232

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Fig. 6 SDP Process

CNB) algorithms to calculate the results. The

results of all the algorithms increased on every

dataset of the NASA repository. Tables 5, 6, 7, 8,

9 , and 10 show the results of all the algorithms on

every dataset before using PCA and after using

PCA.

5 Result and Discussion

We have calculated the result of various used

datasets by applying all the selected algorithms

and the following results are obtained:

5 .1 Result of SVM Fig. 7 Result of SVM with and without using PCA

We have calculated the results of various used

datasets by applying the SVM algorithm and the

above results are obtained. The detailed analysis

says:

•

•

•

CM1 dataset- when we applied the SVM (Sup-

port Vector Machine) algorithm on the CM1

dataset we obtained a 0.86 result but when we

used PCA (Principal component analysis) on

the result, the result increased to 0.98. We have

seen a growth of 0.12 in the data.

JM1 dataset- when we applied the SVM (Sup-

port Vector Machine) algorithm on the JM1

data set we obtained a 0.78 the result but when

we used PCA (Principal Component Analysis)

on the result, the result increased to 1.00. We

have seen a growth of 0.22 in the data.

Used Used

Algorithm Dataset

Result Without Result After

Using PCA Using PCA

CM1

JM1

KC1

MC1

PC1

0.86

0.78

0.74

0.97

0.89

0.98

1.00

0.99

1.00

0.99

SVM

Table 2 Result of SVM before and after using PCA

KC1 dataset- when we applied the SVM algo-

rithm on the KC1 data set we obtained 0.74

as the result but when we used PCA (Principal

4233

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Component Analysis) on the result, the result

increased to 0.99 we saw a growth of 0.25 in the

data.

MC1 dataset- On the MC1 data set when we

applied the SVM algorithm we obtained 0.97 as

the result but when we used the PCA (Princi-

pal component Analysis) result, the result got

increased to 1.00 which shows a growth of 0.03

in the data.

PC1 dataset- using the SVM algorithm we

obtained 0.89 as the result but when we used

PCA (Principal Component Analysis) on the

result, it increased to 0.99 which shows a growth

of 0.10 in the result.

•

•

Fig. 8 Result of RF with and without using PCA

Based on these result sets we prepared a bar chart

to visualize the result, which we can see in Figure • PC1 dataset- On applying the RF algorithm on

the given data set the result remains 1.00 but

after using PCA on it, it decreased to 0.96 which

shows a decrease of 0.04.

7 .

5 .2 Result of RF

We have calculated the results of various used

datasets by applying the RF algorithm and the

above results are obtained. The detailed analysis

says:

Based on these result sets we prepared a bar chart

to visualize the result, which we can see in Figure

8.

5 .3 Result of GNB
Used Used

Algorithm Dataset

Result Without Result After

Using PCA Using PCA We have calculated the results of various used

datasets by applying the GNB algorithm and the

above results are obtained. The detailed analysis

says:

CM1

JM1

0.98

1.00

1.00

1.00

1.00

1.00

1.00

0.98

1.00

0.96

RF KC1

MC1

PC1

Used Used

Algorithm Dataset

Result Without Result After

Using PCA Using PCA Table 3 Result of RF before and after using PCA

CM1

JM1

KC1

MC1

PC1

0.85

0.78

0.74

0.96

0.84

0.97

0.86

0.82

0.97

0.95

GNB
•

•

CM1 dataset- Also applying the RF (Random

Forest) algorithm on the same data set we got

the result 0.98 but when we used PCA on the

same it got increased to 1.00 which shows a

growth of 0.02 in the result.

JM1 dataset- Applying the RF algorithm on the

given data set we got 1.00 as the result. But

after applying PCA to the result it doesn’t get

changed, it remains constant.

KC1 dataset- Also applying the RF algorithm

on the given data set the result remains 1.00 but

after using PCA it decreased to 0.98.

MC1 dataset- Applying the RF algorithm on

the given data set the result remains 1.00 before

and after using PCA on the given data set.

Table 4 Result of GNB before and after using PCA

•

•

CM1 Dataset- When we apply the GNB algo-

rithm on the CM1 dataset the result we

obtained is 0.85 and after using PCA the result

we get is 0.97. Here we observed that after using

PCA the result increased by 0.12.

JM1 Dataset - When we apply the GNB algo-

rithm on the JM1 dataset we get 0.78 as a result

but after using PCA the result increased to 0.86.

Here we see that after using PCA the result

increased by 0.8.

•

•

4234

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Fig. 9 Result of GNB with and without using PCA Fig. 10 Result of BNB with and without using PCA

•

•

•

•

•

•

•

•

KC1 Dataset - When we apply the GNB algo-

rithm on the KC1 dataset the result we obtained

is 0.74 after using PCA the result we get is

0.82. Here we observed that after using PCA the

result is increased by 0.8.

MC1 Dataset - When we apply the GNB algo-

rithm on the MC1 dataset we get 0.96 as a

result but after using PCA the result increased

to 0.97. Here after using PCA, we observed a

small increment in the result by 0.1.

PC1 Dataset - When we apply the GNB algo-

rithm on the PC1 dataset the result we obtained

is 0.84 after using PCA the result we get is

CM1 Dataset- When we apply the BNB algo-

rithm on the CM1 dataset the result we get

is 1.00 after using PCA the result decreased

to 0.97. Here we see that after using PCA the

result decreased by 0.3.

JM1 Dataset- When the BNB algorithm is

applied to the JM1 dataset the result we

obtained is 1.00 but after using PCA we get

0.96. Here we see that after using PCA the

result decreased by 0.4.

KC1 Dataset - When the BNB algorithm is

applied to the KC1 dataset the result we

obtained is 1.00 but after using PCA, we get

0.96. This means after using PCA the result

decreased by 0.4 again.

MC1 Dataset - When the BNB algorithm is

applied to the MC1 dataset the result we

obtained is 1.00 after using PCA we get the

same result 1.00. This means before and after

using PCA the result was not changed.

PC1 Dataset - is BNB algorithm on PC1 dataset

the result we get is 1.00 after using PCA the

result decreased to 0.96.

0.95. Here we observed that after using PCA the

result increased by 0.11.

Based on these result sets we prepared a bar chart

to visualize the result, which we can see in Figure

9

5 .4 Result of BNB

We have calculated the results of various used

datasets by applying the BNB algorithm and the

above results are obtained. The detailed analysis

says:
Based on the results of BNB we prepared a

bar chart to visualize the result which is given in

Figure 10. For better analysis of the results of all

the selected algorithms over the selected dataset,

we calculated bar charts that show the results of

the ”SVM, RF, GNB, and BNB” algorithms over

the ”CM1 dataset” in Figure 11. The results of

the ”SVM, RF, GNB, and BNB” algorithms over

the ”JM1 dataset” are displayed in Figure 12; the

same as the results over the ”KC1 dataset” are

displayed in Figure 13; the results over the ”MC1

Used Used

Algorithm Dataset

Result Without Result After

Using PCA Using PCA

CM1

JM1

1.00

1.00

1.00

1.00

1.00

0.97

0.96

0.96

1.00

0.96

BNB KC1

MC1

PC1

Table 5 Result of BNB before and after using PCA

4235

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

Fig. 14 Result of SVM, RB, and NB on dataset MC1

before using PCA Fig. 11 Result of SVM, RB, and NB on dataset CM1

before using PCA

Fig. 15 Result of SVM, RB, and NB on dataset PC1

before using PCA
Fig. 12 Result of SVM, RB, and NB on dataset JM1

before using PCA

dataset” are displayed in Figure 14; and the results

over the ”MC1 dataset” are displayed in Figure

1 5. Figure 16, and Figure 17 show the results of

selected algorithms over selected datasets before

the selection of principal components and after the

selection of principal components.

Based on the result we observed that the selec-

tion of a good dataset is one part, and the selection

of the dependent and independent variable of the

dataset is another part of a good result. In this

work, the “MC1, JM1, KC1, CM1, and PC1”

datasets we use from the NASA repository for

analysis. And calculated results using SVM, RF,

GNB, and BNB algorithms of the NB algorithm.

We used the PCA algorithm for dimensionality

reduction of the dataset. The process of removing

variables from a training dataset to create machine
Fig. 13 Result of SVM, RB, and NB on dataset KC1

before using PCA

4236

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

the KC1 dataset, and from 1.00 to .96 on the PC1

dataset. Only the results of dataset MC1 were not

changed it was 1.00 before applying PCA and after

applying it was still 1.00.

6 Conclusion

Defect-free software is constantly desired to min-

imize testing costs and maintain software quality

for customer satisfaction. SDP is a technique used

in software engineering to anticipate or predict

the presence of defects, bugs, or issues before a

software system is made public. In this paper, we

analyzed and compared five datasets “MC1, JM1,

KC1, CM1, and PC1” of the NASA repository. At

first, We used SVM, RF, GNB, and BNB algo-

rithms of NB algorithms to calculate the result

of each dataset. We used PCA for dimensional-

ity reduction and calculated the result before and

after applying PCA to all the algorithms. Based

on the results we can say that if we use the PCA

algorithm on the ”CM1, JM1, KC1, MC1, and

PC1” dataset and again apply SVM, RF, GNB

Fig. 16 Result of SVM, RB, and NB before using PCA

& BNB algorithms the results of GNB and SVM

algorithms will be increased.

Fig. 17 Result of SVM, RB, and NB after using PCA

7 Declaration of interests
learning models is known as ”dimensionality

reduction”. We observed that when we applied the

SVM algorithm to the selected datasets results

were 0.86, 0.78, 0.74, 0.97, 0.89. But when we

applied the PCA algorithm to the dataset and on

the calculated dimensions when we again applied

the SVM algorithm, results were increased to 0.98,

The authors state that none of the work presented

in this study may have been influenced by any

known conflicting financial interests or personal

ties.

References
1 .00, 0.99, 1.00, 0.99. The same steps were with

[1] Abdullah Alsaeedi and Mohammad Zubair

Khan. Software defect prediction using super-

vised machine learning and ensemble tech-

niques: a comparative study. Journal of

Software Engineering and Applications, 12

(5):85–100, 2019.

the RF algorithm and observed that the result of

RF on the dataset CM1 was increased from 0.98 to

1

MC1 was not changed, it was 1.00 but the result

on the dataset KC1, and PC1 were decreased from

1

.00, and the result of RF on the dataset JM1 and

.00 to 0.98, and 0.96 respectively, But when we

applied GNB and BNB algorithms of the NB algo-

rithm on the same dataset, the results of the GNB

algorithm increased from .085 to .97 on the CM1

dataset, from .78 to .86 on the JM1 dataset, .74 to

[

[

2] Ishani Arora, Vivek Tetarwal, and Anju

Saha. Open issues in software defect predic-

tion. Procedia Computer Science, 46:906–912,

2 015.
. 82 on the KC1 dataset, from .96 to .97 on MC1

dataset and from .84 to .95 on PC1 dataset. How-

ever, the results of the BNB algorithm decreased

from 1.00 to .97 on the CM1 dataset, from 1.00

to .96 on the JM1 dataset, from 1.00 to .96 on

3] Kamal Bashir, Tianrui Li, Chu-

bato Wondaferaw Yohannese, and Yahaya

Mahama. Enhancing software defect pre-

diction using supervised-learning based

4237

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

framework. In 2017 12th International Con-

ference on Intelligent Systems and Knowledge

Engineering (ISKE), pages 1–6. IEEE, 2017.

[

[

[

4] Iqra Batool and Tamim Ahmed Khan. Soft-

ware fault prediction using deep learning

techniques. Software Quality Journal, pages [12] Ping Guo and Michael R Lyu. A pseu-

doinverse learning algorithm for feedforward

neural networks with stacked generalization

applications to software reliability growth

data. Neurocomputing, 56:101–121, 2004.

1 –40, 2023.

5] David Bowes, Tracy Hall, and Jean Petrí c.

Software defect prediction: do different classi-

fiers find the same defects? Software Quality

Journal, 26:525–552, 2018. [13] Hideaki Hata, Osamu Mizuno, and Tohru

Kikuno. Bug prediction based on fine-grained

module histories. In 2012 34th international

conference on software engineering (ICSE),

pages 200–210. IEEE, 2012.

6] Mohammad Sh Daoud, Shabib Aftab, Munir

Ahmad, Muhammad Adnan Khan, Ahmed

Iqbal, Sagheer Abbas, Muhammad Iqbal, and

Baha Ihnaini. Machine learning empowered

software defect prediction system. 2022.

[7] Geanderson Esteves, Eduardo Figueiredo,

Adriano Veloso, Markos Viggiato, and Nivio

Ziviani. Understanding machine learning

software defect predictions. Automated Soft-

ware Engineering, 27(3-4):369–392, 2020.

[

[

8] Norman E Fenton and Martin Neil. A critique

of software defect prediction models. IEEE

Transactions on software engineering, 25(5):

6 75–689, 1999.

9] Vahid Garousi and Michael Felderer. Worlds

apart: industrial and academic focus areas in

software testing. IEEE software, 34(5):38–45,

2 017.

[10] N Gayatri, Savarimuthu Nickolas, AV Reddy,

S Reddy, and A Nickolas. Feature selection

using decision tree induction in class level

metrics dataset for software defect predic-

tions. In Proceedings of the world congress on

engineering and computer science, volume 1,

pages 124–129, 2010.

[11] MANJUBALA BISI NEERAJ KUMAR

GOYAL. Early prediction of software fault-

prone module using artificial neural network.

International Journal of Performability Engi-

neering, 11(1):44, 2015.

[14] Herb Krasner. The cost of poor quality soft-

ware in the us: A 2018 report. Consortium

for IT Software Quality, Tech. Rep, 10, 2018.

[15] Linsong Miao, Mingxia Liu, and Daoqiang

Zhang. Cost-sensitive feature selection with

application in software defect prediction. In

Proceedings of the 21st international con-

ference on pattern recognition (ICPR2012),

pages 967–970. IEEE, 2012.

16] M Surendra Naidu and N Geethanjali. Clas-

sification of defects in software using deci-

sion tree algorithm. International Journal

of Engineering Science and Technology, 5(6):

332, 2013.

[

[17] Jaechang Nam and Sunghun Kim. Hetero-

geneous defect prediction. In Proceedings of

the 2015 10th joint meeting on foundations of

software engineering, pages 508–519, 2015.

[18] Jalaj Pachouly, Swati Ahirrao, and Ketan

Kotecha. A bibliometric survey on the reli-

able software delivery using predictive analy-

sis. Libr. Philos. Pract, 2020:1–27, 2020.

4238

ResMilitaris,vol.13,n°, I1 ISSN: 2265-6294 Spring (2023)

[

[

[

19] Strategic Planning. The economic impacts

of inadequate infrastructure for software test-

ing. National Institute of Standards and

Technology, 1, 2002.

20] Lei Qiao, Xuesong Li, Qasim Umer, and Ping

Guo. Deep learning-based software defect

prediction. Neurocomputing, 385:100–110,

2 020.

21] Bhanu Pratap Rai, CS Raghuvanshi, and

Ashutosh Kumar Singh. Prediction of soft-

ware defect using featureextraction tech-

nique: A study. NeuroQuantology, 20(14):

2 479, 2022.

[

[

22] Zeeshan Ali Rana, Mian M Awais, and Shafay

Shamail. Impact of using information gain in

software defect prediction models. In Interna-

tional Conference on Intelligent Computing,

pages 637–648. Springer, 2014.

23] Mrinal Singh Rawat and Sanjay Kumar

Dubey. Software defect prediction models

for quality improvement: a literature study.

International Journal of Computer Science

Issues (IJCSI), 9(5):288, 2012.

[24] Hao Wang, Weiyuan Zhuang, and Xiaofang

Zhang. Software defect prediction based on

gated hierarchical lstms. IEEE Transactions

on Reliability, 70(2):711–727, 2021. doi: 10.

109/TR.2020.3047396.

[25] Zhou Xu, Jin Liu, Zijiang Yang, Gege An,

and Xiangyang Jia. The impact of feature

selection on defect prediction performance:

An empirical comparison. In 2016 IEEE 27th

international symposium on software relia-

bility engineering (ISSRE), pages 309–320.

IEEE, 2016.

[26] Meng Yan, Yicheng Fang, David Lo, Xin Xia,

and Xiaohong Zhang. File-level defect pre-

diction: Unsupervised vs. supervised models.

In 2017 ACM/IEEE International Sympo-

sium on Empirical Software Engineering and

Measurement (ESEM), pages 344–353. IEEE,

2017.

[27] Yibiao Yang, Yuming Zhou, Jinping Liu,

Yangyang Zhao, Hongmin Lu, Lei Xu,

Baowen Xu, and Hareton Leung. Effort-

aware just-in-time defect prediction: simple

unsupervised models could be better than

supervised models. In Proceedings of the 2016

24th ACM SIGSOFT international sympo-

sium on foundations of software engineering,

pages 157–168, 2016.

[28] Shi Zhong, Taghi M Khoshgoftaar, and

Naeem Seliya. Unsupervised learning for

expert-based software quality estimation. In

HASE, pages 149–155. Citeseer, 2004.

