
ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

898

THE DEEP LEARNING REVOLUTION AND ITS IMPLICATIONS FOR

COMPUTER ARCHITECTURE AND CHIP DESIGN

1T.CHAKRAPANI,2NANDA KISHORE B

Department Of ECE

St. Johns College of Engineering & Technology, Errakota, Yemmiganur

Abstract

Over the past ten years, there have been

significant advancements in machine learning,

specifically in deep learning techniques that

utilize artificial neural networks. These

advancements have greatly enhanced our

capacity to develop more precise systems in

various fields such as computer vision, speech

recognition, language translation, and natural

language understanding. This paper serves as a

supplementary document to a keynote

presentation at the 2020 International Solid-

State Circuits Conference (ISSCC), which

explores the progress made in machine

learning and its impact on the design of

computational devices, particularly in the

period after Moore's Law. Additionally, it

explores the potential of machine learning to

assist in some elements of the circuit design

process. Ultimately, it outlines a potential

approach for developing far bigger multi-task

models that are activated in a sparse manner

and use more dynamic routing depending on

examples and tasks, beyond the capabilities of

current machine learning models.

I.INTRODUCTION

The past decade has seen a remarkable series

of advances in machine learning (ML), and in

particular deep learning approaches based on

artificial neural networks, to improve our

abilities to build more accurate systems across

a broad range of areas [LeCun et al. 2015].

Major areas of significant advances include

computer vision [Krizhevsky et al. 2012,

Szegedy et al. 2015, He et al. 2016, Real et al.

2017, Tan and Le 2019], speech recognition

[Hinton et al. 2012, Chan et al. 2016],

language translation [Wu et al. 2016] and other

natural language tasks [Collobert et al. 2011,

Mikolov et al. 2013, Sutskever et al. 2014,

Shazeer et al. 2017, Vaswani et al. 2017,

Devlin et al. 2018]. The machine learning

research community has also been able to train

systems to accomplish some challenging tasks

by learning from interacting with

environments, often using reinforcement

learning, showing success and promising

advances in areas such as playing the game of

Go [Silver et al. 2017], playing video games

such as Atari games [Mnih et al. 2013, Mnih et

al. 2015] and Starcraft [Vinyals et al. 2019],

accomplishing robotics tasks such as

substantially improved grasping for unseen

objects [Levine et al. 2016, Kalashnikov et al.

2018], emulating observed human behavior

[Sermanet et al. 2018], and navigating

complex urban environments using

autonomous vehicles [Angelova et al. 2015,

Bansal et al. 2018].

As an illustration of the dramatic progress in

the field of computer vision, Figure 1 shows a

graph of the improvement over time for the

Imagenet challenge, an annual contest run by

Stanford University [Deng et al. 2009] where

contestants are given a training set of one

million color images across 1000 categories,

and then use this data to train a model to

generalize to an evaluation set of images

across the same categories. In 2010 and 2011,

prior to the use of deep learning approaches in

this contest, the winning entrants used hand-

engineered computer vision features and the

top-5 error rate was above 25%. In 2012, Alex

Krishevsky, Ilya Sutskever, and Geoffrey

Hinton used a deep neural network, commonly

referred to as “AlexNet”, to take first place in

the contest with a major reduction in the top-5

error rate to 16% [Krishevsky et al. 2012].

Their team was the only team that used a

neural network in 2012. The next year, the

deep learning computer vision revolution was

in full force with the vast majority of entries

from teams using deep neural networks, and

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

899

the winning error rate again dropped

substantially to 11.7%. We know from a

careful study that Andrej Karpathy performed

that human error on this task is just above 5%

if the human practices for ~20 hours, or 12% if

a different person practices for just a few hours

[Karpathy 2014]. Over the course of the years

2011 to 2017, the winning Imagenet error rate

dropped sharply from 26% in 2011 to 2.3% in

2017.

Figure 1: ImageNet classification contest

winner accuracy over time

These advances in fundamental areas like

computer vision, speech recognition, language

understanding, and large-scale reinforcement

learning have dramatic implications for many

fields. We have seen a steady series of results

in many different fields of science and

medicine by applying the basic research results

that have been generated over the past decade

to these problem areas. Examples include

promising areas of medical imaging diagnostic

tasks including for diabetic retinopathy

[Gulshan et al. 2016, Krause et al. 2018],

breast cancer pathology [Liu et al. 2017], lung

cancer CT scan interpretation [Ardila et al.

2019], and dermatology [Esteva et al. 2017].

Sequential prediction methods that are useful

for language translation also turn out to be

useful for making accurate predictions for a

variety of different medically-relevant tasks

from electronic medical records [Rajkomar et

al. 2018]. These early signs point the way for

machine learning to have a significant impact

across many areas of health and medical care

[Rajkomar et al. 2019, Esteva et al. 2019].

Other fields that have been improved by the

use of deep learning-based approaches include

quantum chemistry [Gilmer et al. 2017],

earthquake prediction [DeVries et al. 2018],

flood forecasting [Nevo 2019], genomics

[Poplin et al. 2018], protein folding [Evans et

al. 2018], high energy physics [Baldi et al.

2014], and agriculture [Ramcharan et al.

2017].

With these significant advances, it is clear that

the potential for ML to change many different

fields of endeavor is substantial.

II. Moore’s Law, Post Moore’s Law, and the

Computational Demands of Machine

Learning

 Many of the key ideas and algorithms

underlying deep learning and artificial neural

networks have been around since the 1960s,

1970s, 1980s, and 1990s [Minsky and Papert

1969, Rumelhart et al. 1988, Tesauro 1994]. In

the late 1980s and early 1990s there was a

surge of excitement in the ML and AI

community as people realized that neural

networks could solve some problems in

interesting ways, with substantial advantages

stemming from their ability to accept very raw

forms of (sometimes heterogeneous) input data

and to have the model automatically build up

hierarchical representations in the course of

training the model to perform some predictive

task. At that time, though, computers were not

powerful enough to allow this approach to

work on anything but small, almost toy-sized

problems. Some work at the time attempted to

extend the amount of computation available

for training neural networks by using parallel

algorithms [Shaw 1981, Dean 1990], but for

the most part, the focus of most people in the

AI and ML community shifted away from

neural network-based approaches. It was not

until the later parts of the decade of the 2000s,

after two more decades of computational

performance improvements driven by Moore’s

Law that computers finally started to become

powerful enough to train large neural networks

on realistic, real-world problems like Imagenet

[Deng et al. 2009], rather than smaller-scale,

toy problems like MNIST [LeCun et al. 2000]

and CIFAR [Krizhevsky et al. 2009]. In

particular, the paradigm of general-purpose

computing on GPU cards (GPGPU) [Luebke et

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

900

al. 2006], because of GPU cards’ high floating

point performance relative to CPUs, started to

allow neural networks to show interesting

results on difficult problems of real

consequence.

It is perhaps unfortunate that just as we started

to have enough computational performance to

start to tackle interesting real-world problems

and the increased scale and applicability of

machine learning has led to a dramatic thirst

for additional computational resources to

tackle larger problems, the computing industry

as a whole has experienced a dramatic

slowdown in the year-over-year improvement

of general purpose CPU performance. Figure 2

shows this dramatic slowdown, where we have

gone from doubling general-purpose CPU

performance every 1.5 years (1985 through

2003) or 2 years (2003 to 2010) to now being

in an era where general purpose CPU

performance is expected to double only every

20 years [Hennessy and Patterson 2017].

Figure 3 shows the dramatic surge in

computational demands for some important

recent machine learning advances (note the

logarithmic Y-axis, with the best-fit line

showing a doubling time in computational

demand of 3.43 months for this select set of

important ML research results) [OpenAI

2018]. Figure 4 shows the dramatic surge in

research output in the field of machine

learning and its applications, measured via the

number of papers posted to the machine-

learning-related categories of Arxiv, a popular

paper preprint hosting service, with more than

32 times as many papers posted in 2018 as in

2009 (a growth rate of more than doubling

every 2 years). There are now more than 100

research papers per day posted to Arxiv in the

machine-learning-related subtopic areas, and

this growth shows no signs of slowing down.

Figure 2: Computing Performance in the

Moore’s Law and the Post-Moore’s Law

Periods

Figure 3: Some important AI Advances and

their Computational Requirements

Figure 4: Machine learning-related Arxiv

papers since 2009

III Machine-Learning-Specialized

Hardware

In 2011 and 2012, a small team of researchers

and system engineers at Google built an early

distributed system called DistBelief to enable

parallel, distributed training of very large scale

neural networks, using a combination of model

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

901

and data parallel training and asynchronous

updates to the parameters of the model by

many different computational replicas [Dean et

al. 2012]. This enabled us to train much larger

neural networks on substantially larger data

sets and, by mid-2012, using DistBelief as an

underlying framework, we were seeing

dramatically better accuracy for speech

recognition [Hinton et al. 2012] and image

classification models [Le et al. 2012]. The

serving of these models in demanding settings

of systems with hundreds of millions of users,

though, was another matter, as the

computational demands were very large. One

back of the envelope calculation showed that

in order to deploy the deep neural network

system that was showing significant word

error rate improvements for our main speech

recognition system using CPU-based

computational devices would require doubling

the number of computers in Google

datacenters (with some bold-but-still-plausible

assumptions about significantly increased

usage due to more accuracy). Even if this was

economically reasonable, it would still take

significant time, as it would involve pouring

concrete, striking arrangements for windmill

farm contracts, ordering and installing lots of

computers, etc., and the speech system was

just the tip of the iceberg in terms of what we

saw as the potential set of the application of

neural networks to many of our core problems

and products. This thought exercise started to

get us thinking about building specialized

hardware for neural networks, first for

inference, and then later systems for both

training and inference.

IV. Why Does Specialized Hardware Make

Sense for Deep Learning Models?

Deep learning models have three properties

that make them different than many other

kinds of more general purpose computations.

First, they are very tolerant of reduced-

precision computations. Second, the

computations performed by most models are

simply different compositions of a relatively

small handful of operations like matrix

multiplies, vector operations, application of

convolutional kernels, and other dense linear

algebra calculations [Vanhoucke et al. 2011].

Third, many of the mechanisms developed

over the past 40 years to enable general-

purpose programs to run with high

performance on modern CPUs, such as branch

predictors, speculative execution,

hyperthreaded-execution processing cores, and

deep cache memory hierarchies and TLB

subsystems are unnecessary for machine

learning computations. So, the opportunity

exists to build computational hardware that is

specialized for dense, low-precision linear

algebra, and not much else, but is still

programmable at the level of specifying

programs as different compositions of mostly

linear algebra-style operations. This

confluence of characteristics is not dissimilar

from the observations that led to the

development of specialized digital signal

processors (DSPs) for telecom applications

starting in the 1980s

[en.wikipedia.org/wiki/Digital_signal_process

or]. A key difference though, is because of the

broad applicability of deep learning to huge

swaths of computational problems across

many domains and fields of endeavor, this

hardware, despite its narrow set of supported

operations, can be used for a wide variety of

important computations, rather than the more

narrowly tailored uses of DSPs. Based on our

thought experiment about the dramatically

increased computational demands of deep

neural networks for some of our high volume

inference applications like speech recognition

and image classification, we decided to start an

effort to design a series of accelerators called

Tensor Processing Units for accelerating deep

learning inference and training. The first such

system, called TPUv1, was a single chip

design designed to target inference

acceleration [Jouppi et al. 2017].

For inference (after a model has been trained,

and we want to apply the already-trained

model to new inputs in order to make

predictions), 8-bit integer-only calculations

have been shown to be sufficient for many

important models [Jouppi et al. 2017], with

further widespread work going on in the

research community to push this boundary

further using things like even lower precision

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

902

weights, and techniques to encourage sparsity

of weights and/or activations.

The heart of the TPUv1 is a 65,536 8-bit

multiply-accumulate matrix multiply unit that

offers a peak throughput of 92 TeraOps/second

(TOPS). TPUv1 is on average about 15X --

30X faster than its contemporary GPU or

CPU, with TOPS/Watt about 30X -- 80X

higher, and was able to run production neural

net applications representing about 95% of

Google datacenters' neural network inference

demand at the time with significant cost and

power advantages [Jouppi et al. 2017].

Inference on low-power mobile devices is also

incredibly important for many uses of machine

learning. Being able to run machine learning

models on-device, where the devices

themselves are often the source of the raw data

inputs used for models in areas like speech or

vision, can have substantial latency as well as

privacy benefits. It is possible to take the same

design principles used for TPUv1 (a simple

design targeting low precision linear algebra

computations at high performance/Watt) and

apply these principles to much lower power

environments, such as mobile phones.

Google’s Edge TPU is one example of such a

system, offering 4 TOps in a 2W power

envelope [cloud.google.com/edge-tpu/,

coral.withgoogle.com/products/]. On-device

computation is already critical to many

interesting use cases of deep learning, where

we want computer vision, speech and other

kinds of models that can run directly on

sensory inputs without requiring connectivity.

One such example is on-device agriculture

applications, like identification of diseases in

plants such as cassava, in the middle of

cassava fields which may not have reliable

network connectivity [Ramcharan et al. 2017].

With the widespread adoption of machine

learning and its growing importance as a key

type of computation in the world, a Cambrian-

style explosion of new and interesting

accelerators for machine learning

computations is underway. There are more

than XX venture-backed startup companies, as

well as a variety of large, established

companies, that are each producing various

new chips and systems for machine learning.

Some, such as Cerebras [www.cerebras.net/],

Graphcore [www.graphcore.ai/], and Nervana

(acquired by Intel) [www.intel.ai/nervana-

nnp/] are focused on a variety of designs for

ML training. Others, such as Alibaba

[www.alibabacloud.com/blog/alibaba-unveils-

ai-chip-to-enhance-cloud-computing-

power_595409] are designing chips focused

on inference.. Some of the designs eschew

larger memory-capacity DRAM or HBM to

focus on very high performance designs for

models that are small enough that their entire

set of parameters and intermediate values fit in

SRAM. Others focus on designs that include

DRAM or HBM that make them suitable for

larger-scale models. Some, like Cerebras, are

exploring full wafer-scale integration. Others,

such as Google’s Edge TPUs

[cloud.google.com/edge-tpu/] are building

very low power chips for inference in

environments such as mobile phones and

distributed sensing devices.

Designing customized machine learning

hardware for training (rather than just

inference) is a more complex endeavor than

single chip inference accelerators. The reason

is that single-chip systems for training are

unable to solve many problems that we want to

solve in reasonable periods of time (e.g. hours

or days, rather than weeks or months), because

a single-chip system cannot deliver sufficient

computational power. Furthermore, the desire

to train larger models on larger data sets is

such that, even if a single chip could deliver

enough computation to solve a given problem

in a reasonable amount of time, that would just

mean that we would often want to solve even

larger problems (necessitating the use of

multiple chips in a parallel or distributed

system anyway). Therefore, designing training

systems is really about designing larger-scale,

holistic computer systems, and requires

thinking about individual accelerator chip

design, as well as high performance

interconnects to form tightly coupled machine

learning supercomputers. Google’s second-

and third-generation TPUs, TPUv2 and TPUv3

[cloud.google.com/tpu/], are designed to

support both training and inference, and the

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

903

basic individual devices, each consisting of

four chips, were designed to be connected

together into larger configurations called pods.

Figure 5 shows the block diagram of a single

Google TPUv2 chip, with two cores, with the

main computational capacity in each core

provided by a large matrix multiply unit that

can yield the results of multiplying a pair of

128x128 matrices each cycle. Each chip has 16

GB (TPUv2) or 32 GB (TPUv3) of attached

high-bandwidth memory (HBM). Figure 6

shows the deployment form of a Google’s

TPUv3 Pod of 1024 accelerator chips,

consisting of eight racks of chips and

accompanying servers, with the chips

connected together in a 32x32 toroidal mesh,

providing a peak system performance of more

than 100 petaflop/s.

Figure 5: A block diagram of Google’s Tensor

Processing Unit v2 (TPUv2)

Figure 6: Google’s TPUv3 Pod, consisting of

1024 TPUv3 chips w/peak performance of

>100 petaflop/s

Low Precision Numeric Formats for

Machine Learning

 TPUv2 and TPUv3 use a custom-designed

floating point format called bfloat16 [Wang

and Kanwar 2019], which departs from the

IEEE half-precision 16-bit format to provide a

format that is more useful for machine

learning and also enables much cheaper

multiplier circuits. bfloat16 was originally

developed as a lossy compression technique to

help reduce bandwidth requirements during

network communications of machine learning

weights and activations in the DistBelief

system, and was described briefly in section

5.5 of the TensorFlow white paper [Abadi et

al. 2016, sec. 5.5]. It has been the workhorse

floating format in TPUv2 and TPUv3 since

2015. As of December, 2018, Intel announced

plans to add bfloat16 support to future

generations of Intel processors [Morgan 2018].

Figure 7 below shows the split between sign,

exponent, and mantissa bits for the IEEE fp32

single-precision floating point format, the

IEEE fp16 half-precision floating point format,

and the bfloat16 format.

Figure 7: Differences between single-precision

IEEE/half-precision IEEE/brain16 Floating

Point Formats

As it turns out, machine learning computations

used in deep learning models care more about

dynamic range than they do about precision.

Furthermore, one major area & power cost of

multiplier circuits for a floating point format

with M mantissa bits is the (M+1) ✕ (M+1)

array of full adders (that are needed for

multiplying together the mantissa portions of

the two input numbers. The IEEE fp32, IEEE

fp16 and bfloat16 formats need 576 full

adders, 121 full adders, and 64 full adders,

respectively. Because multipliers for the

bfloat16 format require so much less circuitry,

it is possible to put more multipliers in the

same chip area and power budget, thereby

meaning that ML accelerators employing this

format can have higher flops/sec and

flops/Watt, all other things being equal.

Reduced precision representations also reduce

the bandwidth and energy required to move

data to and from memory or to send it across

interconnect fabrics, giving further efficiency

gains.

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

904

The Challenge of Uncertainty in a Fast

Moving Field

One challenge for building machine learning

accelerator hardware is that the ML research

field is moving extremely fast (as witnessed by

the growth and absolute number of research

papers published per year shown in Figure 4).

Chip design projects that are started today

often take 18 months to 24 months to finish

the design, fabricate the semiconductor parts

and get them back and install them into a

production datacenter environment. For these

parts to be economically viable, they typically

must have lifetimes of at least three years. So,

the challenge for computer architects building

ML hardware is to predict where the fast

moving field of machine learning will be in the

2 to 5 year time frame. Our experience is that

bringing together computer architects, higher-

level software system builders and machine

learning researchers to discuss co-design-

related topics like “what might be possible in

the hardware in that time frame?” and “what

interesting research trends are starting to

appear and what would be their implications

for ML hardware?” is a useful way to try to

ensure that we design and build useful

hardware to accelerate ML research and

production uses of ML.

Machine Learning for Chip Design

One area that has significant potential is the

use of machine learning to learn to

automatically generate high quality solutions

for a number of different NP-hard optimization

problems that exist in the overall workflow for

designing custom ASICs. For example,

currently placement and routing for complex

ASIC designs takes large teams of human

placement experts to iteratively refine from

high-level placement to detailed placement as

the overall design of an ASIC is fleshed out.

Because there is considerable human

involvement in the placement process, it is

inconceivable to consider radically different

layouts without dramatically affecting the

schedule of a chip project once the initial high

level design is done. However, placement and

routing is a problem that is amenable to the

sorts of reinforcement learning approaches that

were successful in solving games, like

AlphaGo. In placement and routing, a

sequence of placement and routing decisions

all combine to affect a set of overall metrics

like chip area, timing, and wire length. By

having a reinforcement learning algorithm

learn to “play” the game of placement and

routing, either in general across many different

ASIC designs, or for a particular ASIC design,

with a reward function that combines the

various attributes into a single numerical

reward function, and by applying significant

amounts of machine-learning computation (in

the form of ML accelerators), it may be

possible to have a system that can do

placement and routing more rapidly and more

effectively than a team of human experts

working with existing electronic design tools

for placement and routing. We have been

exploring these approaches internally at

Google and have early preliminary-but-

promising looking results. The automated ML

based system also enables rapid design space

exploration, as the reward function can be

easily adjusted to optimize for different trade-

offs in target optimization metrics.

Furthermore, it may even be possible to train a

machine learning system to make a whole

series of decisions from high-level synthesis

down to actual low-level logic representations

and then perform placement and routing of

these low-level circuits into a physical

realization of the actual high level design in a

much more automated and end-to-end fashion.

If this could happen, then it’s possible that the

time for a complex ASIC design could be

reduced substantially, from many months

down to weeks. This would significantly alter

the tradeoffs involved in deciding when it

made sense to design custom chips, because

the current high level of non-recurring

engineering expenses often mean that custom

chips or circuits are designed only for the

highest volume and highest value applications.

Machine Learning for Semiconductor

Manufacturing Problems

With the dramatic improvements in computer

vision over the past decade, there are a number

of problems in the domain of visual inspection

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

905

of wafers during the semiconductor

manufacturing process that may be amenable

to more automation, or to improved accuracy

over the existing approaches in this area. By

detecting defects earlier or more accurately, we

may be able to achieve higher yields or

reduced costs. A survey of these approaches

provides a general sense of the area [Huang

and Pan 2015]

Machine Learning for Learned Heuristics

in Computer Systems

Another opportunity for machine learning is in

the use of learned heuristics in computer

systems such as compilers, operating systems,

file systems, networking stacks, etc. Computer

systems are filled with hand-written heuristics

that have to work in the general case. For

example, compilers must make decisions about

which routines to inline, which instruction

sequences to choose which of many possible

loop nesting structures to use, and how to lay

out data structures in memory [Aho et al.

1986]. Low-level networking software stacks

must make decisions about when to increase or

decrease the TCP window size, when to

retransmit packets that might have been

dropped, and whether and how to compress

data across network links with different

characteristics. Operating systems must choose

which blocks to evict from their buffer cache,

which processes and threads to schedule next,

and which data to prefetch from disk

[Tanenbaum and Woodhull 1997]. Database

systems choose execution plans for high-level

queries, make decisions about how to lay out

high level data on disks, and which

compression methods to use for which pieces

of data [Silberschatz et al. 1997].

The potential exists to use machine-learned

heuristics to replace hand-coded heuristics,

with the ability for these ML heuristics to take

into account much more contextual

information than is possible in hand-written

heuristics, allowing them to adapt more readily

to the actual usage patterns of a system, rather

than being constructed for the average case.

Other uses of ML can replace traditional data

structures like B-trees, hash tables, and Bloom

filters with learned index structures, that can

take advantage of the actual distribution of

data being processed by a system to produce

indices that are higher performance while

being 20X to 100X smaller [Kraska et al.

2018].

Future Machine Learning Directions

A few interesting threads of research are

occuring in the ML research community at the

moment that will likely be even more

interesting if combined together.

First, work on sparsely-activated models, such

as the sparsely-gated mixture of experts model

[Shazeer et al. 2017], shows how to build very

large capacity models where just a portion of

the model is “activated” for any given example

(say, just 2 or 3 experts out of 2048 experts).

The routing function in such models is trained

simultaneously and jointly with the different

experts, so that the routing function learns

which experts are good at which sorts of

examples, and the experts simultaneously learn

to specialize for the characteristics of the

stream of examples to which they are given.

This is in contrast with most ML models today

where the whole model is activated for every

example. Table 4 in Shazeer et al. 2017

showed that such an approach be

simultaneously ~9X more efficient for

training, ~2.5X more efficient for inference,

and higher accuracy (+1 BLEU point for a

language translation task).

Second, work on automated machine learning

(AutoML), where techniques such as neural

architecture search [Zoph and Le 2016, Pham

et al. 2018] or evolutionary architectural

search [Real et al. 2017, Gaier and Ha 2019]

can automatically learn effective structures and

other aspects of machine learning models or

components in order to optimize accuracy for

a given task. These approaches often involve

running many automated experiments, each of

which may involve significant amounts of

computation.

Third, multi-task training at modest scales of a

few to a few dozen related tasks, or transfer

learning from a model trained on a large

amount of data for a related task and then fine-

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

906

tuned on a small amount of data for a new

task, has been shown to be very effective in a

wide variety of problems [Devlin et al. 2018].

So far, most use of multi-task machine

learning is usually in the context of a single

modality (e.g. all visual tasks, or all textual

tasks) [Doersch and Zisserman 2017],

although a few authors have considered multi-

modality settings as well [Ruder 2017].

A particularly interesting research direction

puts these three trends together, with a system

running on large-scale ML accelerator

hardware, with a goal of being able to train a

model that can perform thousands or millions

of tasks in a single model. Such a model might

be made up of many different components of

different structures, with the flow of data

between examples being relatively dynamic on

an example-by-example basis. The model

might use techniques like the sparsely-gated

mixture of experts and learned routing in order

to have a very large capacity model [Shazeer

et al. 2017], but where a given task or example

only sparsely activates a small fraction of the

total components in the system (and therefore

keeps computational cost and power usage per

training example or inference much lower). An

interesting direction to explore would be to use

dynamic and adaptive amounts of computation

for different examples, so that “easy”

examples use much less computation than

“hard” examples (a relatively unusual property

in the machine learning models of today).

Figure 8 depicts such a system.

Figure 8: A diagram depicting a design for a

large, sparsely activated, multi-task model.

Each box in the model represents a

component. Models for tasks develop by

stitching together components, either using

human-specified connection patterns, or

automatically learned connectivity. Each

component might be running a small

architectural search to adapt to the kinds of

data which is being routed to it, and routing

decisions making components decide which

downstream components are best suited for a

particular task or example, based on observed

behavior.

Each component might itself be running some

AutoML-like architecture search [Pham et al.

2017], in order to adapt the structure of the

component to the kinds of data that it is being

routed to that component. New tasks can

leverage components trained on other tasks

when that is useful. The hope is that through

very large scale multi-task learning, shared

components, and learned routing, the model

can very quickly learn to accomplish new

tasks to a high level of accuracy, with

relatively few examples for each new task

(because the model is able to leverage the

expertise and internal representations it has

already developed in accomplishing other,

related tasks).

Building a single machine learning system that

can handle millions of tasks, and that can learn

to successfully accomplish new tasks

automatically, is a true grand challenge in the

field of artificial intelligence and computer

systems engineering: it will require expertise

and advances in many areas, spanning solid-

state circuit design, computer networking,

ML-focused compilers, distributed systems,

and machine learning algorithms in order to

push the field of artificial intelligence forward

by building a system that can generalize to

solve new tasks independently across the full

range of application areas of machine learning.

V. CONCLUSION

The recent progress in machine learning has

already had a significant impact on several

scientific, technical, and other human

endeavors, and this effect is expected to

continue growing. The specific computational

requirements of machine learning, along with

the decline in advancements of general-

purpose CPU performance in the post-Moore's

Law era, present an exciting opportunity for

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

907

the computing hardware industry. We now

have a range of techniques that can be applied

to a wide range of problems in various

domains. These techniques allow us to

significantly increase the size of models and

datasets that can be used for training, with the

potential to impact a large portion of the global

population. By expanding the limits of large-

scale, massively multi-task learning systems

that possess the ability to adapt to new tasks,

we will develop tools that empower us to

achieve greater collective accomplishments as

societies and propel human progress.

Undoubtedly, we are now experiencing a

period of great excitement and innovation.

REFERENCE:

1. [Abadi et al. 2016] Abadi, Martín,

Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew

Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur,

Josh Levenberg, Dan Mane, Rajat

Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan,

Fernanda Viegas, Oriol Vinyals, Pete

Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang

Zheng. "Tensorflow: Large-scale

machine learning on heterogeneous

distributed systems."

arxiv.org/abs/1603.04467 (2016).

2. [Aho et al. 1986] Aho, Alfred V., Ravi

Sethi, and Jeffrey D. Ullman.

"Compilers, principles, techniques."

Addison Wesley (1986).

3. [Baldi et al. 2014] Baldi, Pierre, Peter

Sadowski, and Daniel Whiteson.

"Searching for exotic particles in high-

energy physics with deep learning."

Nature Communications 5 (2014):

4308.

www.nature.com/articles/ncomms530

8

4. [Bansal et al. 2018] Bansal, Mayank,

Alex Krizhevsky, and Abhijit Ogale.

"ChauffeurNet: Learning to drive by

imitating the best and synthesizing the

worst." arxiv.org/abs/1812.03079

(2018).

5. [Chan et al. 2016] Chan, William,

Navdeep Jaitly, Quoc Le, and Oriol

Vinyals. "Listen, attend and spell: A

neural network for large vocabulary

conversational speech recognition." In

2016 IEEE International Conference

on Acoustics, Speech and Signal

Processing (ICASSP), pp. 4960-4964.

IEEE, 2016. arxiv.org/abs/1508.01211

6. [Collobert et al. 2011] Collobert,

Ronan, Jason Weston, Léon Bottou,

Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. "Natural language

processing (almost) from scratch."

Journal of Machine Learning Research

12, no. Aug (2011): 2493-2537.

arxiv.org/abs/1103.0398

7. [Dean 1990] Dean, Jeffrey. "Parallel

Implementations of neural network

training: two back-propagation

approaches”. Undergraduate honors

thesis, University of Minnesota, 1990.

drive.google.com/file/d/1I1fs4sczbCa

ACzA9XwxR3DiuXVtqmejL/view

8. [Dean et al. 2018] Dean, Jeff, David

Patterson, and Cliff Young. "A new

golden age in computer architecture:

Empowering the machine-learning

revolution." IEEE Micro 38, no. 2

(2018): 21-29.

ieeexplore.ieee.org/document/8259424

9. [Deng et al. 2009] Deng, Jia, Wei

Dong, Richard Socher, Li-Jia Li, Kai

Li, and Li Fei-Fei. "Imagenet: A large-

scale hierarchical image database." In

2009 IEEE Conference on Computer

Vision and Pattern Recognition

(CVPR), pp. 248-255. IEEE, 2009.

http://www.image-

net.org/papers/imagenet_cvpr09.pdf

10. [Doersch and Zisserman 2017]

Doersch, Carl, and Andrew Zisserman.

http://www.nature.com/articles/ncomms5308
http://www.nature.com/articles/ncomms5308
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf

ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022)

908

"Multi-task self-supervised visual

learning." In Proceedings of the IEEE

International Conference on Computer

Vision, pp. 2051-2060. 2017.

arxiv.org/abs/1708.07860

11. [Esteva et al. 2017] Esteva, Andre,

Brett Kuprel, Roberto A. Novoa,

Justin Ko, Susan M. Swetter, Helen M.

Blau, and Sebastian Thrun.

"Dermatologist-level classification of

skin cancer with deep neural

networks." Nature 542, no. 7639

(2017): 115.

www.nature.com/articles/nature21056

12. [Esteva et al. 2019] Esteva, Andre,

Alexandre Robicquet, Bharath

Ramsundar, Volodymyr Kuleshov,

Mark DePristo, Katherine Chou,

Claire Cui, Greg Corrado, Sebastian

Thrun, and Jeff Dean. "A guide to

deep learning in healthcare." Nature

Medicine 25, no. 1 (2019): 24.

www.nature.com/articles/s41591-018-

0316-z

13. [Evans et al. 2018] Evans, R., J.

Jumper, J. Kirkpatrick, L. Sifre, T. F.

G. Green, C. Qin, A. Zidek et al. "De

novo structure prediction with deep-

learning based scoring." Annual

Review of Biochemistry 77 (2018):

363-382.

14. [Gaier and Ha 2019] Gaier, Adam, and

David Ha. "Weight Agnostic Neural

Networks." arxiv.org/abs/1906.04358

(2019).

15. [Hennessy and Patterson 2019]

Hennessy, John L., and David A.

Patterson. "A new golden age for

computer architecture." Commun.

ACM 62, no. 2 (2019): 48-60.

cacm.acm.org/magazines/2019/2/2343

52-a-new-golden-age-for-computer-

architecture/fulltext

16. [Huang and Pan 2015] Huang, Szu-

Hao, and Ying-Cheng Pan.

"Automated visual inspection in the

semiconductor industry: A survey."

Computers in industry 66 (2015): 1-

10.

www.sciencedirect.com/science/article

/abs/pii/S0166361514001845

17. [LeCun et al. 2000] LeCun, Y., C.

Cortes, and C. J. Burges. "MNIST

handwritten digits dataset." (2000).

http://yann.lecun.com/exdb/mnist/

18. [Mikolov et al. 2013] Mikolov, Tomas,

Ilya Sutskever, Kai Chen, Greg S.

Corrado, and Jeff Dean. "Distributed

representations of words and phrases

and their compositionality." In

Advances in Neural Information

Processing Systems, pp. 3111-3119.

2013. arxiv.org/abs/1310.4546

19. [Ruder 2017] Ruder, Sebastian. "An

overview of multi-task learning in

deep neural networks."

arxiv.org/abs/1706.05098 (2017).

20. [Zoph and Le 2016] Zoph, Barret, and

Quoc V. Le. "Neural architecture

search with reinforcement learning."

arxiv.org/abs/1611.01578 (2016).

http://www.nature.com/articles/nature21056
http://www.nature.com/articles/s41591-018-0316-z
http://www.nature.com/articles/s41591-018-0316-z
http://www.sciencedirect.com/science/article/abs/pii/S0166361514001845
http://www.sciencedirect.com/science/article/abs/pii/S0166361514001845
http://yann.lecun.com/exdb/mnist/

