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Abstract  

Over the past ten years, there have been 

significant advancements in machine learning, 

specifically in deep learning techniques that 

utilize artificial neural networks. These 

advancements have greatly enhanced our 

capacity to develop more precise systems in 

various fields such as computer vision, speech 

recognition, language translation, and natural 

language understanding. This paper serves as a 

supplementary document to a keynote 

presentation at the 2020 International Solid-

State Circuits Conference (ISSCC), which 

explores the progress made in machine 

learning and its impact on the design of 

computational devices, particularly in the 

period after Moore's Law. Additionally, it 

explores the potential of machine learning to 

assist in some elements of the circuit design 

process. Ultimately, it outlines a potential 

approach for developing far bigger multi-task 

models that are activated in a sparse manner 

and use more dynamic routing depending on 

examples and tasks, beyond the capabilities of 

current machine learning models. 

I.INTRODUCTION  

The past decade has seen a remarkable series 

of advances in machine learning (ML), and in 

particular deep learning approaches based on 

artificial neural networks, to improve our 

abilities to build more accurate systems across 

a broad range of areas [LeCun et al. 2015]. 

Major areas of significant advances include 

computer vision [Krizhevsky et al. 2012, 

Szegedy et al. 2015, He et al. 2016, Real et al. 

2017, Tan and Le 2019], speech recognition 

[Hinton et al. 2012, Chan et al. 2016], 

language translation [Wu et al. 2016] and other 

natural language tasks [Collobert et al. 2011, 

Mikolov et al. 2013, Sutskever et al. 2014, 

Shazeer et al. 2017, Vaswani et al. 2017, 

Devlin et al. 2018]. The machine learning 

research community has also been able to train 

systems to accomplish some challenging tasks 

by learning from interacting with 

environments, often using reinforcement 

learning, showing success and promising 

advances in areas such as playing the game of 

Go [Silver et al. 2017], playing video games 

such as Atari games [Mnih et al. 2013, Mnih et 

al. 2015] and Starcraft [Vinyals et al. 2019], 

accomplishing robotics tasks such as 

substantially improved grasping for unseen 

objects [Levine et al. 2016, Kalashnikov et al. 

2018], emulating observed human behavior 

[Sermanet et al. 2018], and navigating 

complex urban environments using 

autonomous vehicles [Angelova et al. 2015, 

Bansal et al. 2018]. 

As an illustration of the dramatic progress in 

the field of computer vision, Figure 1 shows a 

graph of the improvement over time for the 

Imagenet challenge, an annual contest run by 

Stanford University [Deng et al. 2009] where 

contestants are given a training set of one 

million color images across 1000 categories, 

and then use this data to train a model to 

generalize to an evaluation set of images 

across the same categories. In 2010 and 2011, 

prior to the use of deep learning approaches in 

this contest, the winning entrants used hand-

engineered computer vision features and the 

top-5 error rate was above 25%. In 2012, Alex 

Krishevsky, Ilya Sutskever, and Geoffrey 

Hinton used a deep neural network, commonly 

referred to as “AlexNet”, to take first place in 

the contest with a major reduction in the top-5 

error rate to 16% [Krishevsky et al. 2012]. 

Their team was the only team that used a 

neural network in 2012. The next year, the 

deep learning computer vision revolution was 

in full force with the vast majority of entries 

from teams using deep neural networks, and 
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the winning error rate again dropped 

substantially to 11.7%. We know from a 

careful study that Andrej Karpathy performed 

that human error on this task is just above 5% 

if the human practices for ~20 hours, or 12% if 

a different person practices for just a few hours 

[Karpathy 2014]. Over the course of the years 

2011 to 2017, the winning Imagenet error rate 

dropped sharply from 26% in 2011 to 2.3% in 

2017. 

 

Figure 1: ImageNet classification contest 

winner accuracy over time 

These advances in fundamental areas like 

computer vision, speech recognition, language 

understanding, and large-scale reinforcement 

learning have dramatic implications for many 

fields. We have seen a steady series of results 

in many different fields of science and 

medicine by applying the basic research results 

that have been generated over the past decade 

to these problem areas. Examples include 

promising areas of medical imaging diagnostic 

tasks including for diabetic retinopathy 

[Gulshan et al. 2016, Krause et al. 2018], 

breast cancer pathology [Liu et al. 2017], lung 

cancer CT scan interpretation [Ardila et al. 

2019], and dermatology [Esteva et al. 2017]. 

Sequential prediction methods that are useful 

for language translation also turn out to be 

useful for making accurate predictions for a 

variety of different medically-relevant tasks 

from electronic medical records [Rajkomar et 

al. 2018]. These early signs point the way for 

machine learning to have a significant impact 

across many areas of health and medical care 

[Rajkomar et al. 2019, Esteva et al. 2019]. 

Other fields that have been improved by the 

use of deep learning-based approaches include 

quantum chemistry [Gilmer et al. 2017], 

earthquake prediction [DeVries et al. 2018], 

flood forecasting [Nevo 2019], genomics 

[Poplin et al. 2018], protein folding [Evans et 

al. 2018], high energy physics [Baldi et al. 

2014], and agriculture [Ramcharan et al. 

2017]. 

With these significant advances, it is clear that 

the potential for ML to change many different 

fields of endeavor is substantial. 

II. Moore’s Law, Post Moore’s Law, and the 

Computational Demands of Machine 

Learning 

 Many of the key ideas and algorithms 

underlying deep learning and artificial neural 

networks have been around since the 1960s, 

1970s, 1980s, and 1990s [Minsky and Papert 

1969, Rumelhart et al. 1988, Tesauro 1994]. In 

the late 1980s and early 1990s there was a 

surge of excitement in the ML and AI 

community as people realized that neural 

networks could solve some problems in 

interesting ways, with substantial advantages 

stemming from their ability to accept very raw 

forms of (sometimes heterogeneous) input data 

and to have the model automatically build up 

hierarchical representations in the course of 

training the model to perform some predictive 

task. At that time, though, computers were not 

powerful enough to allow this approach to 

work on anything but small, almost toy-sized 

problems. Some work at the time attempted to 

extend the amount of computation available 

for training neural networks by using parallel 

algorithms [Shaw 1981, Dean 1990], but for 

the most part, the focus of most people in the 

AI and ML community shifted away from 

neural network-based approaches. It was not 

until the later parts of the decade of the 2000s, 

after two more decades of computational 

performance improvements driven by Moore’s 

Law that computers finally started to become 

powerful enough to train large neural networks 

on realistic, real-world problems like Imagenet 

[Deng et al. 2009], rather than smaller-scale, 

toy problems like MNIST [LeCun et al. 2000] 

and CIFAR [Krizhevsky et al. 2009]. In 

particular, the paradigm of general-purpose 

computing on GPU cards (GPGPU) [Luebke et 
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al. 2006], because of GPU cards’ high floating 

point performance relative to CPUs, started to 

allow neural networks to show interesting 

results on difficult problems of real 

consequence. 

It is perhaps unfortunate that just as we started 

to have enough computational performance to 

start to tackle interesting real-world problems 

and the increased scale and applicability of 

machine learning has led to a dramatic thirst 

for additional computational resources to 

tackle larger problems, the computing industry 

as a whole has experienced a dramatic 

slowdown in the year-over-year improvement 

of general purpose CPU performance. Figure 2 

shows this dramatic slowdown, where we have 

gone from doubling general-purpose CPU 

performance every 1.5 years (1985 through 

2003) or 2 years (2003 to 2010) to now being 

in an era where general purpose CPU 

performance is expected to double only every 

20 years [Hennessy and Patterson 2017]. 

Figure 3 shows the dramatic surge in 

computational demands for some important 

recent machine learning advances (note the 

logarithmic Y-axis, with the best-fit line 

showing a doubling time in computational 

demand of 3.43 months for this select set of 

important ML research results) [OpenAI 

2018]. Figure 4 shows the dramatic surge in 

research output in the field of machine 

learning and its applications, measured via the 

number of papers posted to the machine-

learning-related categories of Arxiv, a popular 

paper preprint hosting service, with more than 

32 times as many papers posted in 2018 as in 

2009 (a growth rate of more than doubling 

every 2 years). There are now more than 100 

research papers per day posted to Arxiv in the 

machine-learning-related subtopic areas, and 

this growth shows no signs of slowing down. 

 

Figure 2: Computing Performance in the 

Moore’s Law and the Post-Moore’s Law 

Periods 

 

Figure 3: Some important AI Advances and 

their Computational Requirements 

 

Figure 4: Machine learning-related Arxiv 

papers since 2009 

III Machine-Learning-Specialized 

Hardware  

In 2011 and 2012, a small team of researchers 

and system engineers at Google built an early 

distributed system called DistBelief to enable 

parallel, distributed training of very large scale 

neural networks, using a combination of model 



ResMilitaris,vol.12,n°, 1 ISSN: 2265-6294 Spring (2022) 

 

901 
 
 

and data parallel training and asynchronous 

updates to the parameters of the model by 

many different computational replicas [Dean et 

al. 2012]. This enabled us to train much larger 

neural networks on substantially larger data 

sets and, by mid-2012, using DistBelief as an 

underlying framework, we were seeing 

dramatically better accuracy for speech 

recognition [Hinton et al. 2012] and image 

classification models [Le et al. 2012]. The 

serving of these models in demanding settings 

of systems with hundreds of millions of users, 

though, was another matter, as the 

computational demands were very large. One 

back of the envelope calculation showed that 

in order to deploy the deep neural network 

system that was showing significant word 

error rate improvements for our main speech 

recognition system using CPU-based 

computational devices would require doubling 

the number of computers in Google 

datacenters (with some bold-but-still-plausible 

assumptions about significantly increased 

usage due to more accuracy). Even if this was 

economically reasonable, it would still take 

significant time, as it would involve pouring 

concrete, striking arrangements for windmill 

farm contracts, ordering and installing lots of 

computers, etc., and the speech system was 

just the tip of the iceberg in terms of what we 

saw as the potential set of the application of 

neural networks to many of our core problems 

and products. This thought exercise started to 

get us thinking about building specialized 

hardware for neural networks, first for 

inference, and then later systems for both 

training and inference. 

IV. Why Does Specialized Hardware Make 

Sense for Deep Learning Models?  

Deep learning models have three properties 

that make them different than many other 

kinds of more general purpose computations. 

First, they are very tolerant of reduced-

precision computations. Second, the 

computations performed by most models are 

simply different compositions of a relatively 

small handful of operations like matrix 

multiplies, vector operations, application of 

convolutional kernels, and other dense linear 

algebra calculations [Vanhoucke et al. 2011]. 

Third, many of the mechanisms developed 

over the past 40 years to enable general-

purpose programs to run with high 

performance on modern CPUs, such as branch 

predictors, speculative execution, 

hyperthreaded-execution processing cores, and 

deep cache memory hierarchies and TLB 

subsystems are unnecessary for machine 

learning computations. So, the opportunity 

exists to build computational hardware that is 

specialized for dense, low-precision linear 

algebra, and not much else, but is still 

programmable at the level of specifying 

programs as different compositions of mostly 

linear algebra-style operations. This 

confluence of characteristics is not dissimilar 

from the observations that led to the 

development of specialized digital signal 

processors (DSPs) for telecom applications 

starting in the 1980s 

[en.wikipedia.org/wiki/Digital_signal_process

or]. A key difference though, is because of the 

broad applicability of deep learning to huge 

swaths of computational problems across 

many domains and fields of endeavor, this 

hardware, despite its narrow set of supported 

operations, can be used for a wide variety of 

important computations, rather than the more 

narrowly tailored uses of DSPs. Based on our 

thought experiment about the dramatically 

increased computational demands of deep 

neural networks for some of our high volume 

inference applications like speech recognition 

and image classification, we decided to start an 

effort to design a series of accelerators called 

Tensor Processing Units for accelerating deep 

learning inference and training. The first such 

system, called TPUv1, was a single chip 

design designed to target inference 

acceleration [Jouppi et al. 2017]. 

For inference (after a model has been trained, 

and we want to apply the already-trained 

model to new inputs in order to make 

predictions), 8-bit integer-only calculations 

have been shown to be sufficient for many 

important models [Jouppi et al. 2017], with 

further widespread work going on in the 

research community to push this boundary 

further using things like even lower precision 
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weights, and techniques to encourage sparsity 

of weights and/or activations. 

The heart of the TPUv1 is a 65,536 8-bit 

multiply-accumulate matrix multiply unit that 

offers a peak throughput of 92 TeraOps/second 

(TOPS). TPUv1 is on average about 15X -- 

30X faster than its contemporary GPU or 

CPU, with TOPS/Watt about 30X -- 80X 

higher, and was able to run production neural 

net applications representing about 95% of 

Google datacenters' neural network inference 

demand at the time with significant cost and 

power advantages [Jouppi et al. 2017]. 

Inference on low-power mobile devices is also 

incredibly important for many uses of machine 

learning. Being able to run machine learning 

models on-device, where the devices 

themselves are often the source of the raw data 

inputs used for models in areas like speech or 

vision, can have substantial latency as well as 

privacy benefits. It is possible to take the same 

design principles used for TPUv1 (a simple 

design targeting low precision linear algebra 

computations at high performance/Watt) and 

apply these principles to much lower power 

environments, such as mobile phones. 

Google’s Edge TPU is one example of such a 

system, offering 4 TOps in a 2W power 

envelope [cloud.google.com/edge-tpu/, 

coral.withgoogle.com/products/]. On-device 

computation is already critical to many 

interesting use cases of deep learning, where 

we want computer vision, speech and other 

kinds of models that can run directly on 

sensory inputs without requiring connectivity. 

One such example is on-device agriculture 

applications, like identification of diseases in 

plants such as cassava, in the middle of 

cassava fields which may not have reliable 

network connectivity [Ramcharan et al. 2017]. 

With the widespread adoption of machine 

learning and its growing importance as a key 

type of computation in the world, a Cambrian-

style explosion of new and interesting 

accelerators for machine learning 

computations is underway. There are more 

than XX venture-backed startup companies, as 

well as a variety of large, established 

companies, that are each producing various 

new chips and systems for machine learning. 

Some, such as Cerebras [www.cerebras.net/], 

Graphcore [www.graphcore.ai/], and Nervana 

(acquired by Intel) [www.intel.ai/nervana-

nnp/] are focused on a variety of designs for 

ML training. Others, such as Alibaba 

[www.alibabacloud.com/blog/alibaba-unveils-

ai-chip-to-enhance-cloud-computing-

power_595409] are designing chips focused 

on inference.. Some of the designs eschew 

larger memory-capacity DRAM or HBM to 

focus on very high performance designs for 

models that are small enough that their entire 

set of parameters and intermediate values fit in 

SRAM. Others focus on designs that include 

DRAM or HBM that make them suitable for 

larger-scale models. Some, like Cerebras, are 

exploring full wafer-scale integration. Others, 

such as Google’s Edge TPUs 

[cloud.google.com/edge-tpu/] are building 

very low power chips for inference in 

environments such as mobile phones and 

distributed sensing devices. 

Designing customized machine learning 

hardware for training (rather than just 

inference) is a more complex endeavor than 

single chip inference accelerators. The reason 

is that single-chip systems for training are 

unable to solve many problems that we want to 

solve in reasonable periods of time (e.g. hours 

or days, rather than weeks or months), because 

a single-chip system cannot deliver sufficient 

computational power. Furthermore, the desire 

to train larger models on larger data sets is 

such that, even if a single chip could deliver 

enough computation to solve a given problem 

in a reasonable amount of time, that would just 

mean that we would often want to solve even 

larger problems (necessitating the use of 

multiple chips in a parallel or distributed 

system anyway). Therefore, designing training 

systems is really about designing larger-scale, 

holistic computer systems, and requires 

thinking about individual accelerator chip 

design, as well as high performance 

interconnects to form tightly coupled machine 

learning supercomputers. Google’s second- 

and third-generation TPUs, TPUv2 and TPUv3 

[cloud.google.com/tpu/], are designed to 

support both training and inference, and the 
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basic individual devices, each consisting of 

four chips, were designed to be connected 

together into larger configurations called pods. 

Figure 5 shows the block diagram of a single 

Google TPUv2 chip, with two cores, with the 

main computational capacity in each core 

provided by a large matrix multiply unit that 

can yield the results of multiplying a pair of 

128x128 matrices each cycle. Each chip has 16 

GB (TPUv2) or 32 GB (TPUv3) of attached 

high-bandwidth memory (HBM). Figure 6 

shows the deployment form of a Google’s 

TPUv3 Pod of 1024 accelerator chips, 

consisting of eight racks of chips and 

accompanying servers, with the chips 

connected together in a 32x32 toroidal mesh, 

providing a peak system performance of more 

than 100 petaflop/s. 

 

Figure 5: A block diagram of Google’s Tensor 

Processing Unit v2 (TPUv2) 

 

Figure 6: Google’s TPUv3 Pod, consisting of 

1024 TPUv3 chips w/peak performance of 

>100 petaflop/s 

Low Precision Numeric Formats for 

Machine Learning 

 TPUv2 and TPUv3 use a custom-designed 

floating point format called bfloat16 [Wang 

and Kanwar 2019], which departs from the 

IEEE half-precision 16-bit format to provide a 

format that is more useful for machine 

learning and also enables much cheaper 

multiplier circuits. bfloat16 was originally 

developed as a lossy compression technique to 

help reduce bandwidth requirements during 

network communications of machine learning 

weights and activations in the DistBelief 

system, and was described briefly in section 

5.5 of the TensorFlow white paper [Abadi et 

al. 2016, sec. 5.5]. It has been the workhorse 

floating format in TPUv2 and TPUv3 since 

2015. As of December, 2018, Intel announced 

plans to add bfloat16 support to future 

generations of Intel processors [Morgan 2018]. 

Figure 7 below shows the split between sign, 

exponent, and mantissa bits for the IEEE fp32 

single-precision floating point format, the 

IEEE fp16 half-precision floating point format, 

and the bfloat16 format. 

 

Figure 7: Differences between single-precision 

IEEE/half-precision IEEE/brain16 Floating 

Point Formats 

As it turns out, machine learning computations 

used in deep learning models care more about 

dynamic range than they do about precision. 

Furthermore, one major area & power cost of 

multiplier circuits for a floating point format 

with M mantissa bits is the (M+1) ✕ (M+1) 

array of full adders (that are needed for 

multiplying together the mantissa portions of 

the two input numbers. The IEEE fp32, IEEE 

fp16 and bfloat16 formats need 576 full 

adders, 121 full adders, and 64 full adders, 

respectively. Because multipliers for the 

bfloat16 format require so much less circuitry, 

it is possible to put more multipliers in the 

same chip area and power budget, thereby 

meaning that ML accelerators employing this 

format can have higher flops/sec and 

flops/Watt, all other things being equal. 

Reduced precision representations also reduce 

the bandwidth and energy required to move 

data to and from memory or to send it across 

interconnect fabrics, giving further efficiency 

gains. 
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The Challenge of Uncertainty in a Fast 

Moving Field  

One challenge for building machine learning 

accelerator hardware is that the ML research 

field is moving extremely fast (as witnessed by 

the growth and absolute number of research 

papers published per year shown in Figure 4). 

Chip design projects that are started today 

often take 18 months to 24 months to finish 

the design, fabricate the semiconductor parts 

and get them back and install them into a 

production datacenter environment. For these 

parts to be economically viable, they typically 

must have lifetimes of at least three years. So, 

the challenge for computer architects building 

ML hardware is to predict where the fast 

moving field of machine learning will be in the 

2 to 5 year time frame. Our experience is that 

bringing together computer architects, higher-

level software system builders and machine 

learning researchers to discuss co-design-

related topics like “what might be possible in 

the hardware in that time frame?” and “what 

interesting research trends are starting to 

appear and what would be their implications 

for ML hardware?” is a useful way to try to 

ensure that we design and build useful 

hardware to accelerate ML research and 

production uses of ML. 

Machine Learning for Chip Design  

One area that has significant potential is the 

use of machine learning to learn to 

automatically generate high quality solutions 

for a number of different NP-hard optimization 

problems that exist in the overall workflow for 

designing custom ASICs. For example, 

currently placement and routing for complex 

ASIC designs takes large teams of human 

placement experts to iteratively refine from 

high-level placement to detailed placement as 

the overall design of an ASIC is fleshed out. 

Because there is considerable human 

involvement in the placement process, it is 

inconceivable to consider radically different 

layouts without dramatically affecting the 

schedule of a chip project once the initial high 

level design is done. However, placement and 

routing is a problem that is amenable to the 

sorts of reinforcement learning approaches that 

were successful in solving games, like 

AlphaGo. In placement and routing, a 

sequence of placement and routing decisions 

all combine to affect a set of overall metrics 

like chip area, timing, and wire length. By 

having a reinforcement learning algorithm 

learn to “play” the game of placement and 

routing, either in general across many different 

ASIC designs, or for a particular ASIC design, 

with a reward function that combines the 

various attributes into a single numerical 

reward function, and by applying significant 

amounts of machine-learning computation (in 

the form of ML accelerators), it may be 

possible to have a system that can do 

placement and routing more rapidly and more 

effectively than a team of human experts 

working with existing electronic design tools 

for placement and routing. We have been 

exploring these approaches internally at 

Google and have early preliminary-but-

promising looking results. The automated ML 

based system also enables rapid design space 

exploration, as the reward function can be 

easily adjusted to optimize for different trade-

offs in target optimization metrics. 

Furthermore, it may even be possible to train a 

machine learning system to make a whole 

series of decisions from high-level synthesis 

down to actual low-level logic representations 

and then perform placement and routing of 

these low-level circuits into a physical 

realization of the actual high level design in a 

much more automated and end-to-end fashion. 

If this could happen, then it’s possible that the 

time for a complex ASIC design could be 

reduced substantially, from many months 

down to weeks. This would significantly alter 

the tradeoffs involved in deciding when it 

made sense to design custom chips, because 

the current high level of non-recurring 

engineering expenses often mean that custom 

chips or circuits are designed only for the 

highest volume and highest value applications. 

Machine Learning for Semiconductor 

Manufacturing Problems  

With the dramatic improvements in computer 

vision over the past decade, there are a number 

of problems in the domain of visual inspection 
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of wafers during the semiconductor 

manufacturing process that may be amenable 

to more automation, or to improved accuracy 

over the existing approaches in this area. By 

detecting defects earlier or more accurately, we 

may be able to achieve higher yields or 

reduced costs. A survey of these approaches 

provides a general sense of the area [Huang 

and Pan 2015] 

Machine Learning for Learned Heuristics 

in Computer Systems  

Another opportunity for machine learning is in 

the use of learned heuristics in computer 

systems such as compilers, operating systems, 

file systems, networking stacks, etc. Computer 

systems are filled with hand-written heuristics 

that have to work in the general case. For 

example, compilers must make decisions about 

which routines to inline, which instruction 

sequences to choose which of many possible 

loop nesting structures to use, and how to lay 

out data structures in memory [Aho et al. 

1986]. Low-level networking software stacks 

must make decisions about when to increase or 

decrease the TCP window size, when to 

retransmit packets that might have been 

dropped, and whether and how to compress 

data across network links with different 

characteristics. Operating systems must choose 

which blocks to evict from their buffer cache, 

which processes and threads to schedule next, 

and which data to prefetch from disk 

[Tanenbaum and Woodhull 1997]. Database 

systems choose execution plans for high-level 

queries, make decisions about how to lay out 

high level data on disks, and which 

compression methods to use for which pieces 

of data [Silberschatz et al. 1997]. 

The potential exists to use machine-learned 

heuristics to replace hand-coded heuristics, 

with the ability for these ML heuristics to take 

into account much more contextual 

information than is possible in hand-written 

heuristics, allowing them to adapt more readily 

to the actual usage patterns of a system, rather 

than being constructed for the average case. 

Other uses of ML can replace traditional data 

structures like B-trees, hash tables, and Bloom 

filters with learned index structures, that can 

take advantage of the actual distribution of 

data being processed by a system to produce 

indices that are higher performance while 

being 20X to 100X smaller [Kraska et al. 

2018]. 

Future Machine Learning Directions  

A few interesting threads of research are 

occuring in the ML research community at the 

moment that will likely be even more 

interesting if combined together. 

First, work on sparsely-activated models, such 

as the sparsely-gated mixture of experts model 

[Shazeer et al. 2017], shows how to build very 

large capacity models where just a portion of 

the model is “activated” for any given example 

(say, just 2 or 3 experts out of 2048 experts). 

The routing function in such models is trained 

simultaneously and jointly with the different 

experts, so that the routing function learns 

which experts are good at which sorts of 

examples, and the experts simultaneously learn 

to specialize for the characteristics of the 

stream of examples to which they are given. 

This is in contrast with most ML models today 

where the whole model is activated for every 

example. Table 4 in Shazeer et al. 2017 

showed that such an approach be 

simultaneously ~9X more efficient for 

training, ~2.5X more efficient for inference, 

and higher accuracy (+1 BLEU point for a 

language translation task). 

Second, work on automated machine learning 

(AutoML), where techniques such as neural 

architecture search [Zoph and Le 2016, Pham 

et al. 2018] or evolutionary architectural 

search [Real et al. 2017, Gaier and Ha 2019] 

can automatically learn effective structures and 

other aspects of machine learning models or 

components in order to optimize accuracy for 

a given task. These approaches often involve 

running many automated experiments, each of 

which may involve significant amounts of 

computation. 

Third, multi-task training at modest scales of a 

few to a few dozen related tasks, or transfer 

learning from a model trained on a large 

amount of data for a related task and then fine-
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tuned on a small amount of data for a new 

task, has been shown to be very effective in a 

wide variety of problems [Devlin et al. 2018]. 

So far, most use of multi-task machine 

learning is usually in the context of a single 

modality (e.g. all visual tasks, or all textual 

tasks) [Doersch and Zisserman 2017], 

although a few authors have considered multi-

modality settings as well [Ruder 2017]. 

A particularly interesting research direction 

puts these three trends together, with a system 

running on large-scale ML accelerator 

hardware, with a goal of being able to train a 

model that can perform thousands or millions 

of tasks in a single model. Such a model might 

be made up of many different components of 

different structures, with the flow of data 

between examples being relatively dynamic on 

an example-by-example basis. The model 

might use techniques like the sparsely-gated 

mixture of experts and learned routing in order 

to have a very large capacity model [Shazeer 

et al. 2017], but where a given task or example 

only sparsely activates a small fraction of the 

total components in the system (and therefore 

keeps computational cost and power usage per 

training example or inference much lower). An 

interesting direction to explore would be to use 

dynamic and adaptive amounts of computation 

for different examples, so that “easy” 

examples use much less computation than 

“hard” examples (a relatively unusual property 

in the machine learning models of today). 

Figure 8 depicts such a system. 

 

Figure 8: A diagram depicting a design for a 

large, sparsely activated, multi-task model. 

Each box in the model represents a 

component. Models for tasks develop by 

stitching together components, either using 

human-specified connection patterns, or 

automatically learned connectivity. Each 

component might be running a small 

architectural search to adapt to the kinds of 

data which is being routed to it, and routing 

decisions making components decide which 

downstream components are best suited for a 

particular task or example, based on observed 

behavior. 

Each component might itself be running some 

AutoML-like architecture search [Pham et al. 

2017], in order to adapt the structure of the 

component to the kinds of data that it is being 

routed to that component. New tasks can 

leverage components trained on other tasks 

when that is useful. The hope is that through 

very large scale multi-task learning, shared 

components, and learned routing, the model 

can very quickly learn to accomplish new 

tasks to a high level of accuracy, with 

relatively few examples for each new task 

(because the model is able to leverage the 

expertise and internal representations it has 

already developed in accomplishing other, 

related tasks). 

Building a single machine learning system that 

can handle millions of tasks, and that can learn 

to successfully accomplish new tasks 

automatically, is a true grand challenge in the 

field of artificial intelligence and computer 

systems engineering: it will require expertise 

and advances in many areas, spanning solid-

state circuit design, computer networking, 

ML-focused compilers, distributed systems, 

and machine learning algorithms in order to 

push the field of artificial intelligence forward 

by building a system that can generalize to 

solve new tasks independently across the full 

range of application areas of machine learning. 

V. CONCLUSION  

The recent progress in machine learning has 

already had a significant impact on several 

scientific, technical, and other human 

endeavors, and this effect is expected to 

continue growing. The specific computational 

requirements of machine learning, along with 

the decline in advancements of general-

purpose CPU performance in the post-Moore's 

Law era, present an exciting opportunity for 
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the computing hardware industry. We now 

have a range of techniques that can be applied 

to a wide range of problems in various 

domains. These techniques allow us to 

significantly increase the size of models and 

datasets that can be used for training, with the 

potential to impact a large portion of the global 

population. By expanding the limits of large-

scale, massively multi-task learning systems 

that possess the ability to adapt to new tasks, 

we will develop tools that empower us to 

achieve greater collective accomplishments as 

societies and propel human progress. 

Undoubtedly, we are now experiencing a 

period of great excitement and innovation. 
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