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Abstract 

This study applies Markov chain models to analyze stock market dynamics, focusing on the Sensex 

index and a representative portfolio. The research reveals significant similarities in the stationary 

distributions of the Sensex and its portfolio TPMs, suggesting parallel behaviors. Additionally, it 

evaluates the efficiency of stocks within the portfolio by examining their stationary probabilities 

and Mean Recurrence Times. The findings, validated through chi-square tests for goodness of fit, 

provide novel insights into stock market behavior and offer valuable guidance for investors and 

traders in their decision-making processes. 
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1. INTRODUCTION 

In the constantly evolving and unpredictable realm of stock markets, understanding the nuances of 

market behavior is paramount for investors and traders. Stock markets are known for being 

unpredictable, changing rapidly in ways that aren't always easy to understand. But this doesn't stop 

investors and researchers from trying to find patterns and methods to make sense of these ups and 

downs. This article delves into such a method – the application of Markov chain models – to 

analyze stock market dynamics, particularly focusing on the Sensex index and a selected portfolio 

of stocks.  
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Kaya and Karsligil (2010) emphasize that predicting stock prices involves more than just financial 

numbers; the overall economy and information flow are also critical factors. This complex 

interplay makes stock market forecasting a daunting yet crucial task. 

 

Building on the foundation laid by Doubleday and Esunge (2010) in modeling the Dow Jones 

Industrial Average, this research employs Markov chain models to offer a new perspective on 

stock market behavior. The study by Agwuegbo et al. (2010) similarly analyzes market trends by 

determining probabilities of transitions between various states. Jones and Smith (2009) delve into 

Markov theory and its properties, applying it to two models of the Dow Jones Industrial Average 

and a specific stock portfolio within it. This approach is complemented by Choji et al.'s (2013) 

application of the Markov chain model to forecast the performance of two leading Nigerian banks, 

using a six-year dataset to predict share price movements. D. Zhang and X. Zhang's (2009) study 

on China's stock market underlines the suitability of Markov chains for analyzing and predicting 

stock market indexes and closing prices, emphasizing the model's lack of after-effects. Otieno et 

al.'s (2015) research on the Nairobi Securities Exchange uses Markov chains to forecast trends in 

Safaricom's share prices, employing a four-year dataset for their predictions. Also, incorporating 

insights from Kallah-Dagadu et al.'s study on using Markov chain techniques for portfolio 

construction on the GSE, we calculated mean recurrence time taken by a stock to reach a state of 

gain. 

 

In this study, Transition Probability Matrices (TPMs) have been constructed for the Sensex and a 

carefully selected portfolio from its stocks, including major companies like Reliance Industries 

Limited, Tata Consultancy Services, HDFC Bank, ICICI Bank, and Hindustan Unilever Limited. 

By defining states based on the closing values of the market and the stocks, and categorizing them 

into two- and six-state models, an in-depth analysis of market dynamics has been conducted. The 

striking similarity in the stationary distributions of the Sensex and its portfolio's TPMs reveals an 

intriguing alignment in their behaviors. Moreover, the research extends to identifying the most 

efficient stock within the portfolio. By analyzing the stationary probabilities and Mean Recurrence 

Time of each stock, and employing chi-square tests for goodness of fit, this study aims to determine 

which stock consistently reaches a state of gain in the shortest time. 

 

In our analysis, a sample of 50 days was randomly selected from the population data, which 

encompassed a total of 244 trading days. Remarkably, the TPMs derived from this sample 

exhibited a striking resemblance to the TPMs computed from the entire population dataset. This 

similarity underscores the representativeness of our sampling methodology and the robustness of 

the study in capturing the underlying market dynamics over the specified period. 

 

By understanding the likelihood of various market states and the efficiency of individual stocks, 

investors can make more informed decisions, potentially leading to higher returns. This approach 

not only enhances the investor's knowledge but also contributes to the broader field of financial 
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analysis, offering a fresh perspective on the application of stochastic models in stock market 

prediction. In essence, this article not only contributes to the academic discourse on stock market 

forecasting but also serves as a practical guide for investors seeking to navigate the complexities 

of the stock market with a more analytical and informed approach. 

 

2. PRELIMINARIES 

2.1  The Markov Chain model. A random walk is said to exhibit the Markov property if the 

position of the walk at time 𝑛 depends only upon the position of the walk at time   𝑛 − 1.  If we 

call our random variable 𝑋𝑛, then: 

𝑃(𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑖) = 𝑝𝑖𝑗                                                                                      (1)                                                                                            

is independent of 𝑋𝑛−2, 𝑋𝑛−3,…,𝑋1 so that the state of 𝑋 at time 𝑛 depends only upon the state of 

𝑋 at step 𝑛 − 1. Here each 𝑝𝑖𝑗 for 𝑗 = 1,2, … is a probability row vector describing every possible 

transition from state 𝑖 to any other available state in the system.  

 

                        ∑ 𝑝𝑖𝑗
𝑚
𝑗=1 = 1   ∀ 𝑖               (2) 

 

Thus, 

𝑃(𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛, 𝑋𝑛−1 = 𝑖𝑛−1. . . ) = 𝑃(𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛)                    (3)  

             

 And    𝑝𝑖𝑗
(𝑚)

= 𝑃(𝑋𝑛 = 𝑗|𝑋𝑛−𝑚 = 𝑖)                                                                                 (4)     

indicates 𝑚-step transition. 

The process of moving from one state of the system to another with the associated probabilities of 

each transition is known as the chain. It is said that every step taken in a chain possessing the 

Markov property depends only upon the immediately preceding step. It can easily be seen how 

calculating probabilities of a series, or chain, of events in a Markov system is greatly simplified 

due to this Markov property. Instead of concerning ourselves with the entire path a random variable 

might have taken to arrive at its current state, we need only consider its state directly before a given 

point of interest.  

 

2.2  Transition Matrix. The transition probabilities form an 𝑚 ×𝑚 transitional probability matrix 

T, where: 

𝑇 = [𝑝𝑖𝑗] = [

𝑝11 𝑝12
𝑝21 𝑝22

⋯ 𝑝1𝑚
⋯ 𝑝2𝑚

⋮ ⋮
𝑝𝑚1 𝑝𝑚2

⋯ ⋮
⋯ 𝑝𝑚𝑚

] 

 

Each row of 𝑇 is the probability distribution relating to a transition from state 𝑖 to state 𝑗.  

States 𝑖 and 𝑗 are said to communicate if there exists a path between them. It must be true that 𝑖 is 

reachable from 𝑗 in a finite number of transitions and also that 𝑗 is reachable from 𝑖 in a finite 

number of transitions for any two states 𝑖 and 𝑗 to communicate. A state 𝑖 is said to be periodic if 
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all paths leading from state 𝑖 back to 𝑖 have a length that is a multiple of some integer 𝑘, such that 

𝑘 > 0 for the smallest possible 𝑘. If all states of a chain communicate and are not periodic, then 

the chain is said to be ergodic.  

 

2.3  Stationary Distribution. The probability distribution {𝑣𝑗} is called stationary distribution of a 

Markov Chain with transition probabilities 𝑝𝑗𝑘 if 

                                𝑣𝑘 = ∑ 𝑣𝑗𝑝𝑗𝑘𝑗   such that 𝑣𝑗 ≥ 0 and ∑𝑣𝑗 = 1 

i.e., whether a Markov System regardless of the initial state 𝑗, reaches a stable state after a large 

number of transitions. 

A chain is said to have a steady state distribution if there exists a vector 𝑣 such that given a 

transition matrix 𝑇, 

                               𝑣𝑇 = 𝑣                                                                                               (5) 

                               

If a chain is ergodic then we are guaranteed the existence of this steady state vector 𝑣. This steady 

state vector can be viewed as the distribution of a random variable in the long run. This steady 

state probability vector 𝑣 of an m state random walk can also be obtained as: 

 

                                lim
𝑛→∞

𝑇𝑛= [

𝑣1 𝑣2
𝑣1 𝑣2

⋯ 𝑣𝑚
⋯ 𝑣𝑚

⋮ ⋮
𝑣1 𝑣2

⋯ ⋮
⋯ 𝑣𝑚

]                            (6)  

  

2.4  Recurrent property. Consider a state that is arbitrary but fixed, 𝑖, and define an integer n ≥ 1; 

then,  

                     𝑓𝑖𝑖
(𝑛)
= {𝑋𝑛 = 𝑖, 𝑋𝑗 ≠ 𝑖, 𝑗 = 1,2, . . , 𝑛 − 1|𝑋0 = 𝑖}                             (7)                                                           

It implies that 𝑓𝑖𝑖
(𝑛)

  is the likelihood that the first return to state 𝑖, from state 𝑖, happens at the 

𝑛𝑡ℎ  transition. However, given that  

 

                       𝑝𝑖𝑖
(𝑛)
= ∑ 𝑓𝑖𝑖

(𝑘)
 𝑝𝑖𝑖
(𝑛−𝑘)𝑛

𝑘=0 ,   𝑛 ≥ 1                                                     (8)   

If state 𝑖 is aperiodic, then 

                          𝑝𝑖𝑖
(𝑛)
→  1/𝜇𝑖𝑖   , 𝑎𝑠 𝑛 → ∞.                                                       (9)         

 

2.5 The Chi-square Test. The test for goodness of fit was used to test the null hypothesis that the 

steady-state probabilities are stable and consistent. 

 

3. METHODOLOGY 

3.1  The Portfolio. A stock portfolio was created, consisting of Reliance Industries Limited, Tata 

Consultancy Services, HDFC Bank, ICICI Bank, and Hindustan Unilever Limited. A notional 

investment of ₹10,00,000 was allocated across these stocks, in proportion with their respective 
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market capitalizations. The daily value of this portfolio was determined using the daily prices of 

these stocks. From these values, percentage changes were computed, which were then utilized to 

construct Transition Probability Matrices 3 and 4. 

 

3.2  Model specification. Specifically, four models have been developed: 

• Probabilities of the entire Sensex moving up or down  

• Probabilities of Sensex moving between partitions of the possible gains and losses  

• Probabilities of a specific portfolio of stocks moving up or down  

• Probabilities of a specific portfolio of stocks moving between partitions of possible gains and 

losses   

The transition matrices were estimated based on 247 transitions obtained from  closing values of 

the BSE Sensex [9] from October 11, 2022 to October 10, 2023. The closing values were 

categorized using Microsoft Excel.  

Model (1) focuses on the Bombay Stock Exchange (BSE) Sensex movements and is defined by 

two scenarios: 

State 1: Market's closing value is the same or higher than that of the previous day 

State 2: Market's closing value drops below the previous day's closing figure  

 

Model (2) is a bit more detailed and categorizes the movements of the SENSEX based on the 

percentage change in its value: 

State 1:  Large jump up (gain greater than 1.30% ) 

State 2: Moderate jump up (gain between 0.69% and 1.30% ) 

State 3:  Small jump up (gain between 0.061% and 0.69%)  

State 4: Small jump down (loss between -0.57% and 0.061%) 

State 5: Moderate jump down (loss between -1.18% and -0.57%) 

State 6: Large jump down (loss greater than -1.18%) 

 

The boundaries specified within the parentheses earlier were derived by creating a histogram that 

mapped out the frequency of daily percentage variations in the value of the Sensex. Interestingly, 

the percentage changes in Sensex (FIGURE 3.2.1), portfolio (FIGURE 3.2.2) and share prices 

followed normal distribution as because index value and share prices usually change by small 

amounts and do so often, while large changes are less common. 
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FIGURE 3.2.1 

 

The concept of 95% confidence interval was thereby applied to calculate the limits for six-state 

TPMs.  

State Limits Determination 

• Large Jump Up/Down: 

Up: Greater than 𝜇 +  1.96𝜎. This captures changes that are significantly higher than the average, 

falling in the top 2.5% of all changes (assuming normal distribution). 

Down: Less than 𝜇 −  1.96𝜎. This represents changes significantly lower than the average, also 

in the bottom 2.5%. 

• Moderate Jump Up/Down: 

Up: Between 𝜇 + 1𝜎 and 𝜇 + 1.96𝜎. These changes are above average but not as extreme as the 

large jumps. 

Down: Between 𝜇 − 1𝜎 and 𝜇 − 1.96𝜎. These are below average but not to the extent of large 

jumps. 

• Small Jump Up/Down: 

Up: Between 𝜇 and 𝜇 + 1𝜎. These are slight increases, within the range of what's typically 

expected. 

Down: Between 𝜇 and 𝜇 − 1𝜎. These are slight decreases, again within the range of normal 

fluctuations. 

Further, the core aim of the article is to compare the price movements between the Sensex and a 

specifically curated portfolio of stocks from it. To initiate this, a portfolio was crafted comprising 

selected stocks from the Sensex: Reliance Industries Limited, Tata Consultancy Services, HDFC 

Bank, ICICI Bank Ltd., and Hindustan Unilever. This portfolio was infused with an investment 

capital of ₹10,00,000, with the distribution of funds across each stock being proportional to the 

company's market capitalization. 

 

For Model (3), TPM was developed, which was based on the percentage changes in the portfolio's 

value, structured into two simple states: 
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State 1: Portfolio's value is the same or higher than that of the previous day  

State 2: Portfolio’s value drops below the previous day's closing figure 

 

For Model (4), a more nuanced state space was incorporated to capture various levels of gains and 

losses in the portfolio's value: 

State 1: Large jump up (gain greater than 1.43% ) 

State 2: Moderate jump up (gain between 0.75% and 1.43% ) 

State 3:  Small jump up (gain between 0.038% and 0.75%)  

State 4: Small jump down (loss between -0.67% and 0.038%) 

State 5: Moderate jump down (loss between -1.36% and -0.67%) 

State 6: Large jump down (loss greater than -1.36%) 

 

 
FIGURE 3.2.2 

 

These models are tailored to analyze and interpret the fluctuation patterns of the portfolio's value. 

 

3.3  Sampling technique. A sample comprising 50 trading days was selected from a larger dataset 

that spanned 244 trading days. This selection was carried out using a simple random sampling 

technique, focusing exclusively on the BSE Sensex data. 

The study involved the creation of two distinct TPMs based on the sampled data - Model (a) and 

Model (b) - each characterized by different state definitions. 

 

For Model (a): 

State 1: Market's closing value is the same or higher than that of the previous day 

State 2: Market's closing value drops below the previous day's closing figure  

 

For Model (b): 

State 1: Large jump up (gain greater than 1.41% ) 

State 2: Moderate jump up (gain between 0.76% and 1.41% ) 

State 3:  Small jump up (gain between  0.07% and 0.76% )  
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State 4: Small jump down (loss between -0.61% and 0.07%) 

State 5: Moderate jump down (loss between -1.26% and -0.61%) 

State 6: Large jump down (loss greater than -1.26%) 

 
FIGURE 3.3.1 

The percentage changes in Sensex for sample data (FIGURE 3.3.1) also followed normal 

distribution. 

These state definitions were designed to capture varying magnitudes of market movements, both 

upward and downward, providing a nuanced understanding of the market dynamics as observed 

in the Sensex. 

 

4. RESULTS 

The transition matrix T1 for model (1) was found to be: 

𝑇1 =
𝑆1
𝑆2
(
𝑆1 𝑆2

0.6286

0.5
0.3714
0.5

) 

 

𝑇1
6 = (

0.5738 0.4262
0.5738 0.4262

) 

indicating that 𝑣1 = (0.5738, 0.4262). 

 

The transition matrix T2 for model (2) was found to be: 

 

𝑇2 =

𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6(

 
 
 
 

𝑆1
0

𝑆2
0.3333

0.037 0.1111
0.0187 0.0748

𝑆3
0.1667

𝑆4
0.3333

𝑆5
0.1667

𝑆6
0

0.5926 0.1111 0.1111 0.037
0.514 0.2617 0.1121 0.0187

0
0.1034
0

0.1045
0.1724
0.1429

0.4328
0.1724
0.1429

0.3284
0.3448
0.2857

0.1045 0.0299
0.1724 0.0345
0.2857 0.1429)
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𝑇2
8 =

(

  
 

0.0249 0.1073 0.4383 0.2767 0.1237
0.0249 0.1073 0.4383 0.2767 0.1237
0.0249
0.0249
0.0249
0.0249

0.1073
0.1073
0.1073
0.1073

0.4383
0.4383
0.4383
0.4383

0.2767
0.2767
0.2767
0.2767

0.1237
0.1237
0.1237
0.1237

0.0288
0.0288
0.0288
0.0288
0.0288
0.0288)

  
 

 

 

so that 𝑣2 = (0.0249, 0.1073, 0.4383, 0.2767, 0.1237, 0.0288) 

 

For Model (3): 

𝑇3 = (
0.5648 0.4351
0.5 0.5

) 

 

𝑇3
5 = (

0.5346 0.4653
0.5346 0.4653

) 

 

indicating that 𝑣3 = (0.5346, 0.4653). 

 

For Model (4): 

𝑇4 =

(

  
 

0 0 0.5          0.3333 0.1667
0 0.2308 0.5769 0.1154 0.0385

0.0105
0.0465
0.0435
0

0.0842
0.0814
0.087
0.2222

0.4
0.3721
0.3043
0.1111

0.3474
0.407
0.3913
0.4444

0.1158
0.0698
0.087
0.2222

0
0.0385
0.0421
0.0233
0.087
0 )

  
 

 

 

𝑇4
8 =

(

  
 

0.0245 0.1013 0.3909 0.3522 0.0942
0.0245 0.1013 0.3909 0.3522 0.0942
0.0245
0.0245
0.0245
0.0245

0.1013
0.1013
0.1013
0.1013

0.3909
0.3909
0.3909
0.3909

0.3522
0.3522
0.3522
0.3522

0.0942
0.0942
0.0942
0.0942

0.0367
0.0367
0.0367
0.0367
0.0367
0.0367)

  
 

 

 

indicating that 𝑣4 = (0.0245, 0.1013, 0.3909, 0.3522, 0.0942, 0.0367) 
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Transition matrix and diagram for individual stocks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.4: ICICI equity transition matrix and diagram 

 

FIGURE 4.1: RIL equity transition matrix and diagram 

 
FIGURE 4.2: TCS equity transition matrix and diagram 

 

 
FIGURE 4.3: HDFC equity transition matrix and diagram 

 

FIGURE 4.5: HUL equity transition matrix and diagram 

] 
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Transition matrix S1 for model (a) composed of a random sample of 50 days was found to be: 

 

𝑆1 = (
0.655 0.345
0.5 0.5

) 

 

𝑆1
6 = (

0.582 0.418
0.582 0.418

) 

 

 

indicating that 𝑣5 = (0.582, 0.418). 

 

Transition matrix S2 for model (b) composed of a random sample of 50 days was found to be: 
 

𝑆2 =

(

  
 

0 0    1          0 0
0 0 0.5 0.17 0.33
0.06
0
0.14
0

0.11
0.13
0.29
0

0.33
0.4
0.14
0

0.39
0.33
0.14
1

0.11
0.13
0.14
0

0
0
0
0
0.14
0 )

  
 

 

 

 

𝑆2
6 =

(

  
 

0.041 0.122 0.367 0.306 0.143
0.041 0.122 0.367 0.306 0.143
0.041
0.041
0.041
0.041

0.122
0.122
0.122
0.122

0.367
0.367
0.367
0.367

0.306
0.306
0.306
0.306

0.143
0.143
0.143
0.143

0.02
0.02
0.02
0.02
0.02
0.02)

  
 

 

          TABLE 4.1: Summary statistics for steady-state distributions and mean recurrent time for equities. 

 Steady State Distributions 
Mean Recurrent time 

Equities Loss Gain 

RIL 0.5123 0.4877 2.0504 

TCS 0.5041 0.4959 2.0165 

HDFC 0.4626 0.5374 1.8608 

ICICI 0.4717 0.5283 1.8929 

HUL 0.5043 0.4957 2.0178 

 

TABLE 4.2: Chi-square test for goodness of fit for the Markov chain model 

Equity calculated        df tabulated 

RIL 4.094 1 6.635 

TCS 4.004 1 6.635 

HDFC 4.629 1 6.635 

ICICI 4.420 1 6.635 

HUL 4.109 1 6.635 
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so that 𝑣6 = (0.041, 0.122, 0.367, 0.306, 0.143, 0.02) 

 

5. DISCUSSION AND CONCLUSION 

The TPMs for both Sensex (𝑇1) and the portfolio (𝑇3) reveal a notable trend: there is a greater 

likelihood of transitioning to a state of gain than a state of loss. This is a positive indicator for 

investors, as the steady state probabilities suggest that days of gains are more probable than days 

of losses in both Sensex and the portfolio. 

In the TPMs for Model (2) and (4), the analysis shows that regardless of the current state, there is 

a high probability of the next day being one of small loss or small gain. This indicates a market 

that is not prone to large, sustained swings, which is encouraging for investors focusing on long-

term growth and stability. 

 

Stock Behaviour 

The transition matrix for RIL (FIGURE 4.1) indicates a 53.6% chance of staying in a % loss state 

and a 46.54% chance of switching from % loss to % gain. Additionally, there is a 48.7% chance 

of transitioning from a gain state to a loss state, and a 51.2% chance of maintaining a gain state. 

The mean recurrent time to return to a gain state is 2.05 weeks (TABLE 4.1) 

The TCS stock shows an equal chance (50%) of moving to a loss or gain state from a loss 

state (FIGURE 4.2). In the long run, the stock has a 50% chance of decreasing in price and 49% 

chance of increasing. This indicates a balanced but slightly volatile nature of TCS stock. 

HDFC Bank's transition probabilities favour an increase in stock prices, with a higher 

likelihood of the stock price increasing than decreasing (FIGURE 4.3) The mean recurrent time 

for the HDFC stock to return to a gain state is approximately 1.86 weeks, making it the most 

efficient stock in terms of transitioning to a gain state among the ones studied. 

The behaviours of ICICI (FIGURE 4.4) and HUL (FIGURE 4.5) are consistent with the 

patterns observed in RIL and TCS but differ in the magnitude of their transition probabilities. Their 

long-run distribution and mean recurrent times, however, are similar. 

 

Statistical Validation 

The chi-square test results (TABLE 4.2) confirm the goodness of fit for the Markov chain model. 

With the calculated values for all five equities being less than the critical values at a 99% 

Confidence Interval, it suggests that the steady-state probabilities of the states are stable and 

consistent, validating the reliability of the Markov chain model in financial analysis. 

A sample of 50 days was carefully chosen out of a total of 244 trading days. The similarity 

between the TPM from this small sample and the TPM from the entire year's data shows that the 

technique of selecting the sample was effective and helped in accurately capturing the main trends 

of the Sensex during the year. 

In summary, the study demonstrates that a diversified portfolio tends to replicate the overall 

market's behaviour, with a tendency towards small gains and losses.  

 



ResMilitaris, vol.13 n°,4 ISSN: 2265-6294 Spring (2023) 

 

 

 
2015 

 

HDFC Bank emerges as the most efficient stock in the portfolio, characterized by the shortest 

mean recurrence time to a state of gain and the highest steady-state probability for gain.  

 

This detailed analysis not only reinforces the utility of Markov chain models in stock market 

analysis but also provides actionable insights for investors and portfolio managers. The 

consistency and stability of these models, as evidenced by the chi-square test, further solidify their 

applicability in financial market prediction and analysis. 
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