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ABSTRACT:  

This article presents a two-grid approach 

for developing a black-box iterative solver 

for a large class of real-life problems in 

continuum mechanics (heat and mass 

transfer, fluid dynamics, elasticity, 

electromagnetism, and others). The main 

requirements on this (non-)linear black-

box solver are: (1) robustness (the lowest 

number of problem-dependent 

components), (2) efficiency (close-to-

optimal algorithmic complexity), and (3) 

parallelism (a parallel robust algorithm 

should be faster than the fastest sequential 

one). The basic idea is to use the auxiliary 

structured grid for more computational 

work, where (non-)linear problems are 

simpler to solve and to parallelize, i.e., to 

combine the advantages of unstructured 

and structured grids: simplicity of 

generation in complex domain geometry 

and opportunity to solve (non-)linear 

(initial-)boundary value problems by using 

the Robust Multigrid Technique. Topics 

covered include the description of the two-

grid algorithm and estimation of their 

robustness, convergence, algorithmic 

complexity, and parallelism. Further 

development of modern software for 

solving real-life problems justifies 

relevance of the research. The proposed 

two-grid algorithm can be used in black-

box parallel software for the reduction in 

the execution time in solving (initial-

)boundary value problems. 
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parallel; high-performance and multigrid 
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1. INTRODUCTION  

Mathematical modelling of physical and 

chemical processes has always been an 

important activity in science and 

engineering [1]. Scientists and engineers, 

however, cannot understand all the details 

of the mathematical models, numerical 

algorithms, parallel computing 

technologies, and parallel supercomputer 

architectures. This fact motivates the 

development of black-box software. 

Several industries, as well as engineering 

and consulting companies worldwide, use 

commercially available general-purpose 

CFD codes for the simulation of fluid flow, 

heat and mass transfer, and combustion in 

aerospace applications (Fluent, Star-

CCM+, COMSOL’s CFD Module, Altair’s 

AcuSolve, and others). Also, many 

universities and research institutes 

worldwide apply commercial codes, in 

addition to using those developed in house. 

Today, open-source codes such as 

OpenFOAM are also freely available. 

Other important issues are the description 

of complex domain geometries and the 

generation of suitable grids. However, to 

successfully apply such codes and to 

interpret the computed results, it is 

necessary to understand the fundamental 

concepts of computational methods. A 

promising and challenging trend in 

numerical simulation and scientific 

computing is to devise a single code to 

handle all problems which already be 
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solved. As a rule, mathematical modelling 

consists of the following stages: 

(1) The formulation of the mathematical 

model for the studied physical and 

chemical processes in form N (u) = f ; (1)  

(2) The approximation of the space-time 

continuum (generation of computational 

grid G);  

(3) The approximation of the differential 

problems (1) on grid G to obtain a discrete 

analogue of the mathematical model Nh 

(uh ) = f h ; (2)  

(4) A numerical solution for the (non-

)linear discrete equations uh = N −1 h f h 

(3) on a sequential or parallel computer;  

(5) The visualisation and analysis of 

computational results. 

Here, N (u) = f denotes a system of (non-

)linear PDEs and (initial-)boundary 

conditions (mathematical model), Nh (uh ) 

= f h denotes the resulting system of (non-

)linear algebraic Equations (the discrete 

analogue of the mathematical model), and 

uh = N −1 h f h is the numerical solution. 

Unfortunately, each stage of the 

mathematical modelling is a very complex 

problem which has not yet been solved 

robustly. The most time consuming step in 

execution is the numerical solution of 

(non-)linear discrete Equation (3). Some 

remarks need to be added to the concept of 

black-box solver. Previously, an algorithm 

for solving a system of linear algebraic 

equations was called black-box solver if it 

required only the matrix formulation of 

problem Ax = b, i.e., the coefficient matrix 

A, the right-hand side vector b, and a 

starting guess x (0) to the solution A −1b 

[2]. A similar approach is applicable to 

solving the linear problems or to solving 

globally linearized nonlinear problems 

without any geometric input [3]. 

Monolithic methods applied to the entire 

system in a coupled manner demonstrate 

robust convergence for the saddle point 

problems and multiphysics simulation 

[4,5]. The most elegant conservative 

approach to construct the monolithic 

algorithm is finite volumecoupled ordering 

of unknowns, i.e., with usage of geometric 

data on computational grid. It is clear that 

efficient monolithic method is too difficult 

to construct for solving systems of 

strongly coupled nonlinear PDEs using 

only local linearization. We define 

software as black-box if it does not require 

any additional input from the user apart 

from a specification of the physical 

problem consisting of the domain 

geometry, boundary and initial conditions, 

source terms, the enumeration of the 

equations to be solved (heat conductivity 

equation, Navier–Stokes equations, 

Maxwell equations, etc.), and mediums. 

The user does not need to know anything 

about numerical methods or 

highperformance and parallel computing 

[6]. The idea behind robust algorithms is to 

choose the components independently of a 

given problem to match large a class of 

problems as possible [7]. The robust 

approach is often used in software 

packages where attaining the highest 

efficiency for a single problem is not so 

important [3,8].  

In fact, we have the numerous 

mathematical models of various physical 

and chemical processes for multiphysics 

simulation in real-life problems, the 

numerous methods for generating adaptive 

unstructured or (block-)structured grids 

[9], numerous methods for approximating 

the nonlinear (initial-)boundary value 

problems on these grids, the orderings of 

unknowns and the numerous iterative 

methods for parallel segregated/coupled 

solution of globally/locally linearized 

discrete analogues of these nonlinear 

(initial-)boundary value problems. If it 
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possible to develop «one parallel solver for 

all problems», then this solver can be 

putted into black-box software for parallel 

handling a wide class of real-life problems. 

It should be emphasized that the execution 

time critically depends on the 

computational algorithm used to solve the 

real-life problems in parallel. 

The development of classical solvers can 

be regarded as the attempts to improve 

either robustness or convergence rate, or 

efficiency of parallel algorithm [3]. In our 

view, the development of black-box solver 

can be regarded as the attempt to 

simultaneously improve robustness, 

convergence rate, and efficiency of parallel 

algorithm, despite mutual exclusive nature 

of these requirements. 

This paper will focus on mathematical 

background of the black-box solver 

development. First, it is necessary to 

formulate the problem of constructing 

black-box solver. Next, a two-grid 

algorithm consisting of the original and 

auxiliary grids for solving nonlinear 

(initial-) boundary value problems will be 

presented. Then Robust Multigrid 

Technique (RMT) for solving the 

nonlinear (initial-) boundary value 

problems on the auxiliary grid will be 

presented. The goal of the paper is to 

develop a black-box computational 

approach for parallel solution of a wide 

class of applied problems starting with the 

Poisson equation up to systems of 

nonlinear strongly coupled partial 

differential equations (multiphysics 

simulation) in domains with complex 

geometry, which we already know how to 

solve. The main difficulty is that this 

algorithm must satisfy three mutually 

exclusive requirements (robustness, 

efficiency, and parallelism). 

Modern software (Fluent, Star-CCM+, 

COMSOL’s CFD Module, Altair’s 

AcuSolve, and others) use general building 

blocks, which helps users to develop their 

own software for particular applications 

without having to start from scratch. The 

efficiency of users algorithm assembled 

from these building blocks is difficult to 

estimate, finding their optimal forms can 

impose challenges for many applications. 

The attempts are made to optimize the 

iterative algorithms using neural networks 

[10,11]. For example, the transfer 

operators are crucial for fast convergence 

of multigrid methods, but they are 

unknown in advance. To find them original 

approach based on a reformulation of the 

two-grid method in terms of a deep neural 

network with a specific architecture has 

been proposed and developed [12]. A more 

attractive approach is to minimize the 

number of problemdependent components, 

i.e., to develop Robust Multigrid 

Technique with the problemindependent 

transfer operators (Section 4). This one of 

reasons for indicating the practical 

significance of the work . 

The article is structured as follows: In 

Section 1, we briefly introduce main 

problems caused by further development 

of black-box software for scientific and 

technical computations. Section 2 

describes general requirements on black-

box solver such as robustness, complexity, 

and parallelism. Section 3 introduces two-

grid algorithm with auxiliary structured 

grid for simplifying coupled solution of 

nonlinear (initial-)boundary value 

problems. Section 4 represents Robust 

Multigrid Technique used on the auxiliary 

grid. Discussion on the multigrid methods 

is given in Section 5. Section 6 

summarizes advantages of the two-grid 

algorithm. 
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2. GENERAL REQUIREMENTS 

ON BLACK-BOX SOLVER 

In order to clarify our understanding of 

black-box solver, we want to briefly 

discuss different computational aspects of 

real-life problems and to point out those 

problem features which we regard as the 

most significant ones: 

(1) Generation and adaptive refinement of 

the computational grids in complex 

domains. Unstructured automatic mesh 

generation is much easier than the 

generation of (block-)structured grids for 

very complicated domains, but the 

construction of efficient solver is much 

easier for structured grids [13,14]. 

Adaptivity and parallelism are numerically 

important principles, which, however, 

partly conflict with each other [3].  

(2) Multiphysics simulation. Multiphysics 

simulation involves the numerical analysis 

of multiple, simultaneous physical and 

chemical phenomena (such as heat 

transfer, fluid flow, deformation, 

electromagnetics, acoustics, mass 

transport, and others). The systems of 

nonlinear partial differential equations 

describing the phenomena can be solved in 

(de-)coupled manner. The coupled and 

decoupled iterations show a certain 

difference in the computational work, 

which is not known in advance but 

detected during the iterative solution 

process. 

(3) Stationary or non-stationary solution. 

The initial-boundary value problems for 

the time-dependent PDEs of engineering 

physics and the efficient algorithms for 

their numerical solution are of 

considerable scientific and practical 

interest [15]. The following are reasons for 

this:  

(a) Some physical processes (for example, 

turbulence) are purely non-stationary 3D 

phenomena; 

 (b) The initial-boundary value problems 

are particularly useful if the solution shows 

an unsteady behaviour which is not known 

in advance. A steady-state solution can be 

obtained through pseudo-time marching. 

Using semi-implicit or fully implicit 

discretizations, large and adaptable time 

steps can be used, and parallel processing 

across space and/or time is feasible;  

(c) The systems of strongly coupled 

nonlinear PDEs are used for multiphysics 

simulation in real-life problems. In this 

case, the time step can be used as an 

underrelaxation factor for convergence 

control of the nonlinear iterations. 

Therefore, a time-dependent formulation 

of PDEs is more preferable for black-box 

implementation. The computational 

algorithm must be efficient for different 

grid aspect ratio in time and in space. 

What properties should the true black-box 

algorithm have? From our point of view, 

the most significant properties are: 

robustness, optimal computational work. 

Remember that here the number of 

problem-dependent component defines the 

robustness of algorithms: an algorithm is 

called robust if it has the least number of 

problem-dependent components among 

algorithms of the same class and optimal 

computational work is the opportunity to 

solve many problems to within truncation 

error at a cost of CN arithmetic operations, 

where N is the number of unknowns. The 

development of black-box solvers for 

multidisciplinary applications based on the 

solution of the “robustness–efficiency– 

parallelism” problem is a new challenge 

for scientific computing. Unfortunately, 

the true black-box solver cannot be 

constructed because the above 

requirements are mutually exclusive. 
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Therefore, it is necessary to soften the 

“robustness–efficiency–parallelism” 

requirements in order to construct a close-

to-black-box solver. Algorithmic 

complexity (W) is a way of comparing the 

efficiency of computational algorithms. 

Complexity can be measured in terms of 

the number of arithmetic operations that it 

takes for the algorithm to solve the given 

problem. We start our discussion with 

linear PDEs since the analysis is 

particularly easy and illustrative: let N be a 

linear elliptic operator in (1) (for example, 

N is a Laplace operator) and the domain Ω 

be d-dimensional unit cube (d = 2, 3). A 

uniform computational grid G is generated 

by dividing each edge of the cube Ω into n 

subintervals. In the following, n and h = 

1/n denote the discretization parameter and 

mesh size, respectively. Some 

approximation of the problem (1) on the 

grid G results in the discrete analogue (2). 

Using some ordering of unknowns, the 

linear discrete problem (2) can be rewritten 

in the matrix form 

where A is a coefficient matrix, u is a 

vector of unknowns, and b is a right-hand 

side vector. General linear iterations for 

solving the system (4) can be represented 

in the form 

 

where the splitting matrix W defines a 

basic linear iterative algorithm 

 

where I is the unity matrix, and s is the 

iteration counter. In the following, we will 

assume that the system (4) has an unique 

solution u = A −1b and iterations (5) 

converge to this solution: u (s) → u = A 

−1b for s → +∞. The basic linear 

algorithm (5) for iterative solving (4) has 

three problem-dependent components: the 

ordering of unknowns, the splitting matrix 

W and a stopping criterion for these 

iterations. For estimating the algorithmic 

complexity, we assume that a block 

ordering of the unknowns is used, i.e., the 

number of unknowns becomes 

 

where nb is the number of blocks, Nb is 

the number of unknowns forming each 

block, N = n d , d = 2, 3 is the number of 

unknowns, and n is the discretization 

parameter (h = 1/n). The computational 

cost of each Vanka-type iteration (block 

Gauss–Seidel method used for the coupled 

numerical solution of systems of PDEs 

including the saddle-point problems 

[16,17]) is 

 

arithmetic operations (ao), where C is 

some constant. The number of iterations 

(5) can be estimated as 

 

where the parameter κ depends on the 

condition number of the coefficient matrix 

A and the block size Nb , d = 2, 3. Then 

the algorithmic complexity of the block 

iterative method becomes 

 

Use of the uniform grid in the above-

mentioned linear analysis makes it 

possible to obtain the expression (6) for 

estimating the computational work. If nb = 

1, then the block iteration coincides with 

the Gaussian elimination 

 

i.e., the complexity W is κ-independent 

and 
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The Gaussian elimination with 

partial/complete pivoting is implemented 

without the problem-dependent 

components, but large complexity (W = 

O(N3 ) ao) allows this direct method to be 

used for solving small systems of linear 

algebraic Equations (SLAEs). The point 

ordering of an unknown corresponds to nb 

= N. In this case, the algorithmic 

complexity becomes 

 

It is expected that the point iterative 

method (5) will be faster than the Gaussian 

elimination for sufficiently large N, i.e., 0 

≤ κ < 2d. The parameter κ depends on the 

coefficient matrix A: κ → 0 for well-

conditioned problems and the point 

iterative method has almost optimal 

algorithmic complexity 

 

As a rule, it is not useful to accelerate a 

highly efficient solver. The extra effort 

does not pay off.  

Thus, the simplest problem of constructing 

a robust iterative algorithm for numerical 

solving linear (initial-)boundary value 

problems on a uniform grid can be 

formulated as follows:  

(1) If A in (4) is a well-conditioned 

coefficient matrix (κ → 0), then the robust 

iterative algorithm must coincide with the 

basic linear algorithm (5);  

(2) If A in (4) is an ill-conditioned 

coefficient matrix (0 < κ < 2d), then it is 

necessary to add the lowest number of 

problem-dependent components to the 

basic linear algorithm (5) to: 

(a) Reduce the algorithmic complexity (6) 

down to a close-to-optimal value 

 

in sequential implementation;  

(b) Ensure that a parallel algorithm should 

be faster than the fastest sequential solver. 

The above considerations imply that it is 

necessary to coupled consider the two 

requirements of close-to-optimal 

complexity (7) and parallelism. For the 

given purpose, the execution time of a 

parallel close-to-black-box algorithm 

should be compared with the execution 

time of the fastest (optimal) sequential 

algorithm. Let 

 

be the algorithmic complexity of optimal 

solver and 

 

be the algorithmic complexity of fully 

parallel close-to-black-box solver (7). 

Here, p is the number of independent 

computing units in parallel implementation 

and Co and Cp are some constant. 

Assuming that the execution time is 

proportional to the complexity in the 

algorithm considered (T ∼ W), we have 

 

where S is the speed-up of the parallel 

solver over the optimal one, To is the 

execution time of the sequential optimal 

algorithm, and Tp is the execution time of 

the parallel close-toblack-box algorithm, N 

and p are the number of unknowns and 

independent computing units, respectively. 

If Co ≈ Cp then 
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From the above results and considerations, 

one can conclude that parallel 

implementation of the close-to-black-box 

algorithm (7) will not lead to impressive 

reduction in the execution time as 

compared with the optimal sequential one 

(8) with N large. Constructing the iterative 

algorithm for numerically solving 

nonlinear (initial-boundary value problems 

remains the same:  

(1) If the sequential Newton-type iterations 

converge slowly, then convergence should 

be accelerated up to close-to-optimal value 

(7) using the least number of extra 

problemdependent components; 

 (2) The parallel nonlinear algorithm 

should be faster than the fastest sequential 

one.  

In general, development of the robust 

algorithm is more difficult than that of 

solving linear problems on a uniform grid. 

We summarize these considerations as 

follows:  

(1) As a rule, systems of nonlinear strongly 

coupled PDEs in complex domains 

(multiphysics simulation) are needed to 

solve in a (de)coupled manner for 

industrial applications, so theoretical 

analysis of algorithmic complexity such as 

(6) becomes more difficult;  

(2) Simplicity of Gauss–Seidel iterations 

makes this algorithm attractive for 

smoothing in low-memory sequential or 

parallel multigrid. For real-life 

applications, it is far from trivial to choose 

optimal robust algorithm components 

uniformly for a large class of problems. In 

many cases, the Krylov subspace methods 

may have advantages. Therefore, each 

iterative algorithm for the numerical 

solution of nonlinear (initial-)boundary 

value problems has at least three problem-

dependent components: the ordering of 

unknowns, (de)coupled iterations for a 

locally/globally linearised discrete 

problems and a stopping criterion for this 

iterative process. As a result, a black-box 

solver requires black-box optimization 

(i.e., the optimal choice of the problem-

dependent components of the robust 

algorithm for the given problem without 

user control).  

The question remains: Is it possible to 

construct a close-to-optimal black-box 

solver (the least number of problem-

dependent components, close-to-optimal 

complexity (7), the parallel algorithm 

should be faster than the fastest sequential 

one) instead of the true black-box one 

(absence of the problem-dependent 

components, optimal complexity (8), and 

full parallelism)? Yes! First, a general 

computational approach for combining the 

advantages of unstructured and structured 

grids (two-grid algorithm) will be 

presented. Second, a robust method for 

solving the discrete initial-boundary value 

problems on the auxiliary structured grid 

will be analysed. 

3. TWO-GRID ALGORITHM  

Close-to-black-box solver can be 

constructed by combining the advantages 

of unstructured and structured grids: 

simplicity of automatic generation in 

complex domain geometry and 

opportunity to solve nonlinear (initial-

)boundary value problems by very 

efficient geometric multigrid methods in 

parallel (de-)coupled manner. The 

Auxiliary Space Method is a (non-)nested 

two-level preconditioning technique based 

on a simple relaxation scheme (smoother) 

and an auxiliary space (here a structured 

grid is the auxiliary space). The basic idea 

of the Auxiliary Space Method is to use an 

auxiliary (non-)linear problem in the 

auxiliary space, where it is simpler to solve 

[18,19]. The solution of auxiliary problem 

(auxiliary grid correction) is then 



 
 

1956 

ResMilitaris,vol.12,n°5, ISSN: 2265-6294 Spring (2022) 

transferred back to the original space. The 

mismatch between auxiliary space and the 

original space is corrected by a few 

smoothing iterations. For reason of 

simplicity, we consider a linear boundary 

value problem 

 

on domain Ω ∈ Rd , together with a set of 

appropriate boundary conditions 

 

at the domain boundary ∂Ω. Here, L is a 

linear elliptic operators, f is a known 

functions and u is the desired solution. Let 

uˆ be an approximation to the solution u 

and c = u − uˆ is a correction, i.e., 

difference between the solution and the 

approximation to it. The representation of 

the solution 

 

is called Σ-modification of the solution 

[15,20]. Substitution of (10) into (9) leads 

to Σmodified form of this problem 

 

Σ-modification can be used for solving 

some nonlinear problems (for example, the 

Navier– Stokes equations), but Π-

modification u = uˆ · c can be preferable 

for another nonlinear problems. The 

general approach for solving the nonlinear 

problems solution is Full Approximation 

Storage scheme [3].  

Let an original (un-)structured grid Go and 

an auxiliary structured grids Ga be 

generated in the domain Ω. Figures 1 and 

2 represents example of such 

computational grids. Approximation of 

(11) on these grids Go and Ga leads to the 

discrete problems written in the matrix 

form (with the eliminated boundary 

conditions): 

 

It should be emphasized that the problem 

(11) is discretized on these grids Go and 

Ga independently. So, the systems (12) and 

(13) are independent from each other. It 

simplifies the coupled iterative solution of 

systems of PDEs. For interface between 

(12) and (13), a restriction operator Ro→a 

transferring the residual f h o − Ao ˆu h o 

from the grid Go onto the grid Ga 

 

and a prolongation operator Pa→o 

transferring the correction c h a from the 

grid Ga onto the grid G 

 

should be defined. Figure 3 demonstrates 

an example of the transfer operators Ro→a 

and Pa→o . Using (14) and (15), the 

correction c h o can be computed as 

 

 

Figure 1. Example of the original (un-

)structured grid Go 
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Figure 2. Example of the auxiliary 

structured grids Ga 

Figure 4 represent the linear two-grid 

algorithm 

1. Transfer of the residual f h o − Ao 

ˆu (q) o to the auxiliary grid Ga , 

where q is a counter of the intergrid 

iteration 

2. 2. Solution of the auxiliary system 

by some numerical method 

 

3. Prolongation of the correction ca to 

the original grid G 

 

where Pa→o is a prolongation operator 

transferring the correction to Go ;  

4. Computation of the starting guess 

for the smoothing iterations on G 

 

5. Smoothing iterations on the 

original grid G 

 

where s is the smoothing iteration 

counter;  

6. Updating the approximation to the 

solution 

 

where q is the intergrid iteration 

counter;  

7. check convergence, repeat if 

necessary 

 

 

 

Figure 4. Linear two-grid algorithm 

The linear two-grid algorithm can be 

rewritten in the matrix form 

 

where the iteration matrix of the linear 

two-grid algorithm is 

 

and So = I − W−1 o Ao is a smoothing 

iteration matrix and ν is the smoothing 

iterations counter (kSok < 1).  

The convergence properties of the linear 

two-grid algorithm can be easily analysed 

by considering factor ρq of the averaged 

reduction in the residual r (q) o = f h o − 

Ao ˆu (q) 

 

which shows the averaged reduction in the 

residual over q integrid iterations [21]. The 

classical multigrid theory is based on the 
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approximation and smoothing property as 

introduced by W. Hackbusch [22]:  

1. Smoothing property: a 

monotonically decreasing function 

η(ν) : R+ → R+ exist such that η(ν) 

→ 0 for ν → ∞ an 

 

 
2. Approximation property: there 

exists a constant CA > 0 such that 

 

The smoothing property states, in 

principle, that the smoother reduces the 

highfrequency components of the error 

(without amplifying the low-frequency 

components). The approximation 

property requires the coarse grid 

correction to be reasonable [22]. The 

basis of this theory is a splitting 

(factorization) of the two-grid iteration 

matrix M (17). 

Theorem 1.  

Assuming that the smoothing property 

(19) and approximation property (20) 

hold, then the N-independent 

convergence of the intergrid iterations 

(16) follows immediately for ν that is 

large enough. 

 Proof of Theorem 1. The intergrid 

iterations (16) can be rewritten as 

 

This leads to the following estimation 

 

The splitting of the two-grid iteration 

matrix M (17), the smoothing property 

(19), and approximation property (20) 

lead to the estimation 

 

Since η(ν) is the monotonically 

decreasing function, it should be noted 

that 

 

r a sufficiently large v. 

This theorem predicts that the number 

of intergrid iterations of the two-grid 

algorithm does not depend on the 

number of unknowns N, i.e., ρq 6= ρq 

(N) (18). The main features of the two-

grid algorithm can be summarized as 

follows:  

(1) The number of extra problem-

dependent components as compared 

with the basic algorithm (5) are:  

(a) A non-nested case: let Go and Ga 

be the unstructured and structured grid, 

respectively. The two-grid algorithm 

has two extra problem-dependent 

components: transfer operators Ro→a 

and Pa→o (Figure 3);  

(b) A nested case: let Go and Ga be the 

block-structured grids [9]. In this case, 

we suppose Ga = Go ⇒ Ro→a = 

Pa→o = I in absence of smoothing on 

the original grid (So = I) and the two-

grid algorithm has extra problem-

dependent components (interblock 

interpolation); 

 (c) A nested case: let Go and Ga be the 

structured grids. In this case, we 

suppose Ga = Go ⇒ Ro→a = Pa→o = 

I in absence of smoothing on the 

original grid (So = I) and the two-grid 

algorithm has no extra problem-

dependent components.  

(2) The nonlinear two-grid algorithm 

based on Full Approximation Scheme 

approach is given in [15].  

(3) The nonlinear two-grid algorithm 

offers a general possibility to employ 
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low order schemes and obtain high 

order accuracy (the high order defect 

correction iteration [3]). Remember 

that mathematical modelling in 

continuum mechanics is a chain of 

approximations: (a) The difference 

schemes approximate the governing 

differential Equation (1). (A difference 

scheme is a finite system of algebraic 

equations replacing some differential 

problem);  

(b) The differential Equation (1) 

approximate the fundamental 

conservation laws of continuum 

mechanics. (In fact, the hypothesis of 

continuity prohibits the limit leading to 

the differential equations);  

(c) A continuous medium approximates 

a real one. Since any chemical reaction 

is the result of intermolecular 

interactions, modelling chemical 

processes in continuum mechanics is 

only possible by using empirical 

hypotheses and experimental data to 

approximate the quantum nature of 

these intermolecular interactions. 

As a rule, the mathematical description 

errors of physical and chemical 

processes in real-life problems has a 

physical nature (inaccurate the initial 

and\or the boundary conditions, 

equation state errors, approximate 

description of the turbulent transport 

and the chemical reactions, etc.) and 

they exceed the discretization errors of 

the governing (integro-)differential 

Equations [23]. In many cases, the 

second-order accurate finite volume 

discretization does not damage the 

discrete solution accuracy of the 

mathematical model equations required 

for practical applications. However, 

advanced software can use the high-

order discretization without significant 

changes in the computational 

algorithm. For reasons of robustness, 

the finite volume method of the second 

order discretization will be used on the 

auxiliary grid Ga , but high order 

discretization approaches can be used 

on the original grid Go . 

(4) The basic ingredients of the two-

grid algorithm are computation of 

correction ca on the auxiliary grid Ga 

and smoothing iterations on the 

original grid Ga . The most 

timeconsuming component of the 

solver is numerical inversion of the 

coefficient matrix Aa , i.e., the matrix 

A −1 a in (17).  

(5) The differential problem is 

approximated on the grids Go and Ga 

separately in order to simplify coupled 

iterative solution of systems of PDEs 

on the auxiliary structured grid Ga (for 

example, the Vanka-type iterations or 

the volume-coupled approach used in 

monolithic algebraic multigrid 

methods [5]). 

The two-grid algorithm puts more 

computational work on the auxiliary 

(structured) grid Ga , where the (non-

)linear problems are simpler to solve 

and parallelize. The final effort is the 

construction of an efficient iterative 

algorithm for solving the (non-)linear 

(initial-)boundary value problems on 

the auxiliary grid Ga . 

3. Robust Multigrid Technique  

An epochal event in world 

computational mathematics was 

publication of R.P. Fedorenko’s paper 

(Keldysh Institute of Applied 

Mathematics of Russian Academy of 

Sciences, Moscow, USSR/Russia) in 

1961 [24], where the author formulated 

a new iterative method for solving 

discrete boundary value problems 

(BVPs) on structured grids 
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(https://team.kiam.ru/botchev/fedorenk

o/, accessed on 1 August 2023). 

Thoughtful conclusions on the basis of 

elementary analysis were far ahead of 

their time, and after many years this 

paper was called the “first true 

multigrid publication” in the scientific 

literature. The first theoretical results 

were reported in the pioneering papers 

of N.S. Bakhvalov and G.P. 

Astrakhantsev. At the end of the 1970s 

and at the beginning of the 1980s 

research on the multigrid methods 

increased. Very interesting multigrid 

approaches were proposed and 

developed in the Theoretical Division 

of the Los Alamos National 

Laboratory, USA. In papers [25,26], 

P.O. Frederickson and O.A. McBryan 

studied the efficiency of the Parallel 

Superconvergent Multigrid Method 

(PSMG). The basic idea behind the 

PSMG is the observation that for each 

fine grid there are two natural coarse 

grids—the even and odd points of the 

fine grid (Figure 5). The authors tried 

to develop a optimized multigrid 

algorithm by combining these coarse 

grid solutions for more accurate 

correction. 

 

Although P.O. Frederickson and O.A. 

McBryan restrict themselves to a 

theoretical analysis of the PSMG, they 

demonstrate that besides numerical 

efficiency, the algorithm is also highly 

parallel. The PSMG and related ideas 

essentially refer to massively parallel 

computing. However, combinations or 

the extrapolation of the coarse grid 

corrections is a very efficient approach 

only for the simplest BVPs. Also in 

1990, a similar multiple coarse grid 

correction strategy had been proposed 

for the development of a robust 

multigrid method for black-box 

software in Baranov Central Institute 

of Aviation Motors, Moscow, 

USSR/Russia. A developed solver is 

called Robust Multigrid Technique 

(RMT). The RMT uses a multiple 

coarsening strategy coupled with the 

finite volume discretization in order to 

obtain the problem-independent 

transfer operators and coarse grid 

operator (i.e., the matrix Aa in (13)), 

high parallel efficiency, and to make 

the smoother’s task the least 

demanding. The history of RMT is 

given in [20], and for the theoretical 

description of RMT and corresponding 

parallel analysis, we refer interested 

readers to [6,15,20,27]. 

The uniform finest grid G 0 1 consists 

of two sets of points G v (0;1) and G f 

(0;1): 

 

where the discretization parameter n 0 

1 defines the finest grid G 0 1 . Figure 

6 represents the finest uniform grid G 0 

1 = G v (0;1) ∪ G f (0;1) generated 

with n 0 1 = 8 or mesh size h = 1/8 in 

the unit segment: x v 1 = 0, x v 9 = 1. 

 

Each d-dimensional computational grid 

used in RMT can be represented as 

product of d one-dimensional grids, so 

the one-dimensional grid G 0 1 = G v 

(0;1) ∪ G f (0;1) will be considered in 

detail. Figure 7 represents triple 

coarsening of RMT. This triple 

coarsening is independent of the 
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assignment of grid functions to points 

x v i (x v i are the vertices, x f i are the 

finite volume faces) or to points x f i (x 

f i are the vertices, x v i are the finite 

volume faces). This triple coarsening, 

which does not depend on the 

configuration of finite volumes, gives a 

straightforward generalization to 

multidimensional (un-)staggered 

discretization of the (initial-)boundary 

value problems. Later, the triple 

coarsening was proposed in the 

Theoretical Division of the Los 

Alamos National Laboratory [28].  

PSMG and RMT are the single-grid 

algorithms based on the essential 

multigrid principle of iterations with a 

basic iterative method on the fine grid 

[21], but representation of these single-

grid algorithms as the multigrid solvers 

allows analyse their convergence and 

complexity by elementary methods. 

The essential multigrid principle is to 

approximate the smooth (long 

wavelength) part of the error on 

coarser grids. The non-smooth or 

rough part is reduced with a small 

number (independent of mesh size) h. 

 

Figure 7 illustrates the main properties 

of the coarse grids of RMT: Property 1: 

all coarse grids G 1 1 , G 1 2 and G 1 3 

have no common grid points: 

 

It result in the massive parallelization 

of computations. Property 2: the fine 

grid G 0 1 is represented as a union of 

the coarse grids G 1 1 , G 1 2 and G 1 

3 : 

 

It result in the problem-independent 

prolongation operator P. Property 3: all 

grids are geometrically similar, but the 

mesh size of the coarse grids G 1 1 , G 

1 2 and G 1 3 is three times larger than 

the mesh size of the finest grid G 0 1 . 

It result in the unified finite volume 

discretization of the modified (initial-

)boundary value problems on the 

multigrid structures, i.e., to the 

problem-independent construction of 

the coarse grid operator Aa in (17). 

Property 4: independent of the grid 

functions assignment, each finite 

volume on the coarse grids G 1 1 , G 1 

2 and G 1 3 is a union of three finite 

volumes on the fine grid G 0 1 . It 

result in the problem-independent 

restriction operator R based on the 

additive interval property to evaluate 

integrals in the finite volume 

discretization.  

The finest grid G 0 1 forms zero grid 

level, but the coarse grids G 1 1 , G 1 2 

and G 1 3 form the first grid level. The 

following coarsening is carried out 

recursively: each computational grid G 

l i , i = 1, . . . , 3l of level l is 

considered to be the finest grid for 

three coarse grids of level l + 1. Nine 

coarser grids obtained from three 

coarse grids of the first level form a 

second level as shown in Figure 8. The 

coarsening stops when the coarse grids 

will have a few points x v and x f , and 

further coarsening cannot be 

performed. The coarsest level will be 
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denoted by L + 3 . The total number of 

levels (coarse levels L + 3 and the 

finest grid (zero level)) is L + 3 + 1. 

The grid hierarchy G l m, m = 1, . . . , 

3l , l = 0, . . . , L + 3 will be called a 

multigrid structure (MS) generated by 

the grid G 0 1  

 

Here the coarse grids are used the only 

for obviousness of the technique 

description, since RMT is a single-grid 

algorithm, the index mapping gives the 

multigrid illusion [6,15,20,27]. 

 

Figure 9 represents the finest grid G 0 

1 (n 0 1 = 30, h = 1/n 0 1 = 1/30) and 

the coarse grids of the first and second 

levels. The number of coarse levels L + 

3 + 1 can be computed before the 

generation of a multigrid structure. 

Assume that many of the coarsest grids 

of level L + 3 have three points x v or x 

f . Then the number of points on the 

finest grid G 0 1 is n 0 1 + 1 ≈ 3 L + 3 

+1 or 

 

where the square brackets indicate an 

integer part. The procedure of the fast 

approximation of integrals on the 

multigrid structures uses the ghost 

points of each grid [20,27].  

The multigrid schedule of RMT is the 

V-cycle with no pre-smoothing (the so-

called sawtooth cycle [21]). The 

sawtooth cycle is a special case of the 

V-cycle, in which smoothing before 

the coarse grid correction (pre-

smoothing) is deleted. The 

computational cost of each multigrid 

iteration of RMT can be estimated as 

 

where W0 = CN ao is cost of the finest 

grid smoothing, N is the number of 

unknowns, C is some constant, and L + 

3 + 1 is the number of levels. Since 

 

(21) and all grids of the some level 

have the same number of points, the 

algorithmic complexity of RMT can be 

estimated as 

 

i.e., RMT has the required close-to-

optimal algorithmic complexity (7). 

Theoretical analysis predicts that the 

single-grid RMT has the most 

attractive property of classic multigrid 

methods, namely h-independent 

convergence in general situations 

[6,15,20,27]. 

 

We summarize some well-known facts 

about sequential RMT here:  
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(1) RMT is a single-grid algorithm 

having close-to-optimal algorithmic 

complexity and h-independent 

convergence;  

(2) RMT uses a multiple coarsening 

strategy coupled with the finite volume 

discretization in order to obtain the 

problem-independent transfer operators 

and coarse grid operator, high parallel 

efficiency, and to make the smoother’s 

task the least demanding. The history 

of RMT is given in [6], for the 

theoretical description of RMT and 

corresponding examples and parallel 

analysis, we refer to [6,15,20,27]; 

(3) RMT has extra problem-dependent 

component (the number of smoothing 

iterations on the coarse levels); 

 (4) All problem-dependent 

components of RMT can be optimized 

on the multigrid structure in the black-

box manner. The basic idea of black-

box optimization is the experimental 

study of the iteration convergence rate 

on a multigrid structure starting from 

the same initial guess. For example, a 

discrete problem can be solved using 

different problem-dependent 

components on several grids of the 

same level starting from the same 

initial guess. Analysis of reduction in 

the residual norm during the smoothing 

iterations makes it possible to choose 

close-to-optimal problem-dependent 

components of the algorithm. Figure 9 

illustrates that the similarity of all grids 

of the same level leads to almost the 

same problem-dependent components 

of the algorithm at this level. It should 

be emphasized that this black-box 

optimization does not require any 

theoretical input or a priori information 

on problem to be solved. The extra 

effort for this black-box optimization is 

negligible compared to the effort for 

smoothing 

Finally, analysis of the parallel RMT 

completes analysis of the two-grid 

algorithm. Assuming that the finest 

grid is deleted, we can solve the 

discrete problems on 3 d , d = 2, 3 

independent coarse grids of the first 

level. This geometric parallelism of 

RMT is based on non-overlapping the 

finest grid partition for distribution of 

3 d , d = 2, 3 independent tasks over p 

= 3 κ , κ = 1, 2, . . . , d computing 

units. In the following, the coarse 

grids, which are considered the finest 

grids in the solution process, will be 

called dynamic finest grids. The 

difference between this starting guess 

and the finest grid numerical solution 

does not exceed ` significant digits for 

the second order finite volume 

discretization, where ` is the serial 

number of the dynamic level.  

To illustrate the parallel RMT, we 

consider the following example: 

 

in the unit cube Ω = (0, 1) 3 . If the 

exact solution is given by 

 

then substitution of (23) into (22) gives 

the right-hand side function 

 

and the Dirichlet boundary conditions. 

Standard seven-point finite volume 

discretization of (22) on the uniform 

grid G 0 1 is abbreviated as 
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where ∆ h , u h , and f h are the 

discrete analogues of the Laplace 

operator, the solution u, and the right-

hand side function f , respectively.  

This boundary value problem is solved 

by RMT with (hx = hy = hz = 1/100) 

using the stopping criterion 

 

The error of the numerical solution is 

defined by comparison of the exact and 

approximated solutions 

 

where ua and u h are the exact (23) and 

the numerical solutions, respectively. 

Figure 10 represents the error of the 

numerical solutions kek∞ obtained on 

the multigrid structures MS(G 0 1 ) 

and MS(G 1 k ), k = 1, . . . , 3d starting 

with the iterant zero on 101 × 101 × 

101 uniform finest grid G 0 1 (n 0 1 = 

100, h = 1/100). Taking into account 

the stop-ping criterion, the iterative 

solution of the model BVP on the 

finest grid G 0 1 is a reduction in the 

error of the zero starting guess (ke 

(0)k∞ ≈ e 3 ≈ 20) down to kek∞ ≈ 

10−6 . Figure 10 illustrates the 

accuracy of the starting guess to the 

finest grid solution assembled from the 

solutions obtained in parallel on the 

coarse grids of the first level (dynamic 

finest grids). This geometric 

parallelism does not require 

parallelization of the iterative/direct 

solvers. 

 

Figure 10. Error of the numerical 

solutions obtained on the multigrid 

structures MS(G 0 1 ) and MS(G 1 k ), 

k = 1, . . . , 27. 

The algebraic parallelism of RMT is 

based on the multicolour orderings of 

unknowns (or block of unknowns) to 

parallelize the smoothing iterations on 

the finer levels where the number of 

grids is less than the number of 

computing units. The small-scale 

granular algebraic parallelism is grid-

independent. The solution of the 

modified boundary value problem 

starts on the auxiliary grid. 3 d 

multigrid structures generated by the 

dynamic grids of the first level makes 

it possible to obtain accurate 

approximation to the solution in 

parallel by handling 3 d independent 

discrete problems. In addition to black-

box optimization of the problem-

dependent components, the dynamic 

grid refinements are carried out during 

the solution process on the multigrid 

structures generated by the dynamic 

grids, controlled by some appropriate 

adaptation criteria. Figure 11 

demonstrates an example of the 

adaptive grid refinement. Stopping of 

iterative computation of the auxiliary 

grid correction on the finest grid means 

that the sufficiently accurate 

approximation to the solution on the 
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original grid obtained and subdomains 

for the grid refinement are determined. 

The next step is generation of an 

original (un)structured grid taking into 

account the subdomains for the 

auxiliary grid refinement. The 

auxiliary grid correction is prolonged 

to the original grid and it is corrected 

by a few smoothing iterations. The 

iterative process is continued with 

restriction of residual to the auxiliary 

grid if the required accuracy is not yet 

achieved. Otherwise, the two-grid 

algorithm stops. Subsequent intergrid 

iterations are performed without 

dynamic grids, the black-box 

optimization and the auxiliary grid 

refinement. The initial-boundary value 

problems are solved in the same 

parallel manner: parallel in space as 

that for the boundary value problems 

and parallel in time (waveform 

relaxation) [15,29,30].  

Theoretically, the execution time of the 

parallel RMT implemented over nine 

computing units is approximately 

equal to the execution time of the 

sequential V-cycle [15]. 

 

4. Discussion  

In our opinion, black-box algorithm for 

solving the real-life problems should 

be based on the following principles:  

(1) Dominance of physical errors. In 

many cases, the second-order accurate 

finite volume discretization does not 

damage the discrete solution accuracy 

of the real-life problems, but advanced 

software can use the high-order 

discretization without significant 

changes in the algorithm [31].  

(2) Formalization of computations. The 

black-box algorithm is intended to 

solve the nonlinear initial-boundary 

value problems in unified manner, 

which we already know how to solve. 

In other words, the black-box 

algorithm is development of 

wellknown methods for solving well-

known problems, but not a new 

method for solving new problems.  

(3) Requirements on robustness, 

efficiency and parallelism. The triad of 

requirements on robustness, efficiency, 

and parallelism defines black-box 

algorithm. Attempts to satisfy one 

requirement without considering the 

others is a waste of time. 

 (4) (De)coupled solution of the most 

difficult problem. The strongly coupled 

systems of nonlinear partial (integro-

)differential equations (for example, 

steady Navier– Stokes equations) are 

the most difficult problem for black-

box algorithm. This solver must solve 

such systems not only in segregated 

manner, but also in coupled one on 

(un)structured grids. 

It is clear that true black-box solver (all 

problem-independent components, 

optimal convergence rate, full 

parallelism) cannot be constructed, but 

the above mentioned two-grid 

algorithm (the least number of 

problem-dependent components, close-

to-optimal convergence rate, high 

unified parallelism in RMT-based two-

grid approach for (initial-)boundary 

value problems) is good approximation 

to desired solver for black-box 
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software. From a scientific point of 

view, it is interesting to construct other 

computational techniques for solving a 

large class of nonlinear (initial-

)boundary value problems in 

(de)coupled manner comparable in 

robustness, efficiency and parallelism 

with the two-grid algorithm 

5. CONCLUSIONS  

We summarize advantages of the two-

grid algorithm: The two-grid algorithm 

satisfies to above mentioned conditions 

for black-box solvers:  

(a) Robustness (the lowest number of 

problem-dependent components);  

(b) Efficiency (close-to-optimal 

algorithmic complexity);  

(c) Parallelism (a parallel robust 

algorithm should be faster than the 

fastest sequential one). The number of 

extra problem-dependent components 

as compared with the basic algorithm 

(5) are: 

 (a) A non-nested case: let Go and Ga 

be the unstructured and structured grid, 

respectively. The two-grid algorithm 

has three extra problem-dependent 

components: transfer operators (Ro→a 

and Pa→o ) and the number of 

smoothing iterations on the auxiliary 

grid;  

(b) A nested case: let Go and Ga be the 

block-structured grids. In this case, we 

suppose Ga = Go ⇒ Ro→a = Pa→o = 

I in absence of smoothing on the 

original grid (So = I) and the two-grid 

algorithm has two extra problem-

dependent components (interblock 

interpolation) and the number of 

smoothing iterations on the auxiliary 

grid; 

 (c) A nested case: let Go and Ga be the 

structured grids. In this case, we 

suppose Ga = Go ⇒ Ro→a = Pa→o = 

I in absence of smoothing on the 

original grid (So = I) and the two-grid 

algorithm has extra problem-dependent 

components (the number of smoothing 

iterations on the auxiliary grid). 

The most elegant large-scale granular 

geometric parallelization of RMT can 

be achieved by distributing the 3 d 

independent discrete tasks over 3 d 

computing units. This parallelization is 

smoother-independent. The small-scale 

granular algebraic parallelism is used 

on the finer levels. This parallelization 

is grid-independent. Theoretical 

analysis predicts that the parallel RMT 

implemented over nine computing 

units is approximately equal to the 

sequential V-cycle in execution time. 

The initial-boundary value problems 

are solved in the same parallel manner 

as the boundary value problems, but 

including parallelism in time. The 

results of numerical experiments for 

the illustration of the robustness and 

the efficiency of RMT are given in 

[6,15]. The sequential and parallel 

software are presented in [20,27]. 

REFERENCES 

 1. Sedov, L.I. A Course in Continuum 

Mechanics; Groningen: Wolters-

Noordhoff, The Netherlands, 1971; 

Volume 1.  

2. Dendy, J.E. Black box multigrid. J. 

Comput. Phys. 1982, 48, 366–386. 

[CrossRef] 

 3. Trottenberg, U.; Oosterlee, C.W.; 

Schüller, A. Multigrid; Academic 

Press: London, UK, 2001.  

4. Luo, P.; Rodrigo, C.; Gaspar, F.J.; 

Oosterlee, C.W. Monolithic multigrid 



 
 

1967 

ResMilitaris,vol.12,n°5, ISSN: 2265-6294 Spring (2022) 

method for the coupled Stokes flow 

and deformable porous medium 

system. J. Comput. Phys. 2018, 353, 

148–168.  

5. Ohm, P.; Wiesner, T.A.; Cyr, E.C.; 

Hu, J.J.; Shadid, J.N.; Tuminaro, R.S. 

A monolithic algebraic multigrid 

framework for multiphysics 

applications with examples from 

resistive MHD. Electron. Trans. 

Numer. Anal. 2022, 55, 365–390. 

[CrossRef]  

6. Martynenko, S.I. The Robust 

Multigrid Technique: For Black-Box 

Software; De Gruyter: Berlin, 

Germany, 2017.  

7. Kuzenov, V.V.; Ryzhkov, S.V.; 

Varaksin, A.Y. Numerical Modeling of 

Individual Plasma Dynamic 

Characteristics of a Light-Erosion 

MPC Discharge in Gases. Appl. Sci. 

2022, 12, 3610. [CrossRef] 

 8. Brown, J.; He, Y.; MacLachlan, 

S.P.; Menickelly, M.; Wild, S. Tuning 

multigrid methods with Robust 

optimization and local Fourier 

analysis. SIAM J. Sci. Comput. 2021, 

43, 109–138. [CrossRef]  

9. Kuzenov, V.V.; Ryzhkov, S.V.; 

Varaksin, A.Y. The Adaptive 

Composite Block-Structured Grid 

Calculation of the Gas-Dynamic 

Characteristics of an Aircraft Moving 

in a Gas Environment. Mathematics 

2022, 10, 2130. [CrossRef]  

10. Berg, J.; Nyström, K. A unified 

deep artificial neural network approach 

to partial differential equations in 

complex geometries. Neurocomputing 

2018, 317, 28–41. [CrossRef] 

 11. He, J.; Xu, J. Mgnet: A unified 

framework of multigrid and 

convolutional neural network. Sci. 

China Math. 2019, 62, 1331–1354. 

[CrossRef]  

12. Katrutsa, A.; Daulbaev, T.; 

Oseledets, I. Deep multigrid: Learning 

prolongation and restriction matrices. 

arXiv 2018, arXiv:1711.03825. 

 13. Frey, P.; George, P.L. Mesh 

Generation; Wiley: New York, NY, 

USA, 2010. 

 14. George, P.L. Automatic Mesh 

Generation; Wiley: New York, NY, 

USA, 1991.  

15. Martynenko, S.I. Numerical 

Methods for Black-Box Software in 

Computational Continuum Mechanics; 

De Gruyter: Berlin, Germany, in print. 

 

 


