
ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3298

DESIGN AND PERFORMANCE EVALUATION OF HYBRID

BLOCKCHAIN DATABASE SYSTEMS
1VELPULA MADHAVI,2MUSHAM SWETHA,3SOUMYA KARRA

123Assistant Professor

Department of CSE

Vaagdevi Engineering College, Bollikunta, Khila Warangal, Warangal, Telangana,

India ,506005
ABSTRACT

We seek to give a thorough examination of

the trade-offs and performance of a few

typical hybrid blockchain database systems.

We implement Veritas and BlockchainDB

from the ground up in order to accomplish

this goal. We offer two flavours of Veritas

to cater to the application situations of crash

fault-tolerant (CFT) and byzantine fault-

tolerant (BFT). To be more precise, we use

Veritas with Tendermint to target BFT

application situations and Veritas with

Apache Kafka to target CFT application

scenarios. We contrast these three platforms

with the current BigchainDB open-source

implementation. BigchainDB offers two

versions: an optimised version with

concurrent transaction validation and

blockchain pipelining, and a default

implementation that leverages Tenemint for

consensus.

The results of our experimental

investigation verify that BFT designs, which

are unique to blockchains, perform

significantly worse than CFT designs, which

are generally utilised by distributed

databases. However, our thorough research

also reveals the range of design options that

the developers had to consider and helps to

clarify the trade-offs that must be made

when creating a hybrid blockchain database

system.

I. INTRODUCTION

In the last few years, a handful of systems

that integrate both dis tributed databases and

blockchain properties have emerged in the

academic database community [22, 30, 31,

37, 42, 46]. These systems, termed hybrid

blockchain database systems, are either

adding data base features to existing

blockchains to improve performance and

usability or implement blockchain features

in distributed databases to improve their

security [35]. However, there is little

comparison among these systems. In this

paper, we aim to fill this gap by providing

an in-depth analysis of a few representative

hybrid blockchain database systems.

To achieve this goal, we first have to

overcome a challenge: only one such system,

namely BigchainDB [42] is open-source.

Moreover, by the time of writing this paper,

we did not manage to get the source code of

any other hybrid blockchain database

system. Hence, we undertake the tedious

task of implementing Veritas [22] and

BlockchainDB [30]. By doing so, we gain

the flexibility of changing some parts of the

systems to better compare them to other

systems. For example, we can change the

underlying database from a relational SQL

type to a NoSQL type. Or we can change

the consensus mechanism from crash fault-

tolerant (CFT) to Byzantine fault-tolerant

(BFT).

The original design of Veritas uses Apache

Kafka [20], which is a CFT service, as the

broadcasting service among server nodes.

That is, when a server node needs to update

its local shared database as a result of a

transaction’s execution, it sends this update

to all the other server nodes via the Kafka

service. Moreover, the other server nodes

send their agreement or disagreement

regarding that update via the Kafka service.

Apache Kafka uses a primary backup

mechanism to achieve CFT. Hence, it has

high efficiency at the cost of decreased

liveness. On the other hand, most

blockchain systems adopt a BFT consensus

mechanism. Hence, we also implement a

version of Veritas where Tendermint [8],

which is a BFT consensus, is used as

middleware, similar to BigchainDB [42].

BlockchainDB [30] implements a shared

(and sharded) database on top of a classic

blockchain. The atabase interface provides

a simple key-value store API to the user,

similar to Veritas and BigchainDB. The

blockchain layer is flexible, being able to

interact with different blockchains, such as

Ethereum [9] and Hyperledger Fabric [21].

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3299

In this paper, as well as in [30],

BlockchainDB uses Ethereum as its

underlying blockchain.

BigchainDB introduces two optimizations.

The first optimization, called blockchain

pipelining, allows nodes to vote for a new

block while the current block of the ledger

is still undecided. Each node will just

reference its last decided block when voting

for a new block. By doing so, the system

avoids waiting for blocks to be fully

committed before proposing new blocks.

Second, BigchainDB includes a flavor

called BigchainDB with parallel validation,

or BigchainDB (PV), where transactions are

validated in parallel on multiple CPU cores.

These parallel validations should increase

the throughput, however, we do not observe

any improvement, as we shall see in our

experimental analysis.

In summary, we make the following

contributions:

• We survey and qualitatively compare the

existing hybrid blockchain database systems.

• We provide flexible implementations of

BlockchainDB and Veritas. In particular, we

implement Veritas with Apache Kafka and

Tendermint as mechanisms to broadcast the

transactions. While Kafka provides crash

fault tolerance, Tendermint is designed to

work in a Byzantine environment, closer

to what the blockchains are supposed to do.

• We analyze the performance of five

systems, namely, Veritas

(Kafka), Veritas (Tendermint),

BlockchainDB, BigchainDB, and

BigchainDB with parallel validation. Our

analysis exposes the trade-offs to be

considered by the developers to achieve the

best performance in their application

scenario.

• Among others, we show that Veritas

(Kafka) exhibits a higher performance

compared to all the other systems. For

example, Veritas (Kafka) exhibits close to

30,000 TPS, while Veritas (TM),

BigchainDB, and BigchainDB (PV) exhibit

close to 1,700, 180, and 180 TPS,

respectively, on networks of four peers. On

the other hand, BlockchainDB exhibits less

than 100 TPS. While there is room for

optimization in all the systems, the

significant gap in performance between

CFT and BFT consensus mechanisms will

be hard to reduce.

The rest of this paper is organized as

follows. In Section 2 we survey the existing

hybrid blockchain database systems. In

Section 3, we first describe our

implementations of Veritas and

BlockchainDB, followed by the existing

open-source implementtation of

BigchainDB. In Section 4 we conduct our

performance analysis. In Section 5 we

discuss the trade-offs and challenges that

users and developers encounter when using

a hybrid blockchain database system.

Finally, we conclude the paper in Section 6.

II. BACKGROUND AND

RELATED WORK

In the last few years, there have been a few

works published in database conferences

that integrate blockchains and databases [22,

30, 31, 37, 42, 46]. Such systems allow

companies to do business with peace of

mind because every database operation is

tracked by a distributed ledger. However,

different business scenarios have different

requirements, and as a result, many hybrid

blockchain database systems have been built

for different application scenarios.

In this section, we describe the existing

hybrid blockchain database systems and we

briefly mention some similar systems that

can be classified as ledger databases.

2.1 Hybrid Blockchain Database Systems

Veritas [22] is a shared database design that

integrates an underlying blockchain (ledger)

to keep auditable and verifiable proofs.

The interaction between the database and

the blockchain is done through verifiers. A

verifier takes the transaction logs from the

database, makes a correctness-checking

decision, and sends it to the other verifiers.

The final decision agreed by all the verifiers

is

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3300

recorded onto the blockchain. Hence, the

correctness of the data can be verified based

on the history stored in the blockchain.

An alternative design of Veritas [22], which

is selected by us to be implemented in this

paper, uses a shared verifiable table as its

key storage. In this design, each node has a

whole copy of the shared table and tamper-

proof logs in the form of a distributed ledger,

as shown in Figure 1. The ledger stores the

update (write) logs of the shared table. Each

node sends its local logs and receives

remote logs via a broadcasting service. The

verifiable table design of Veritas uses

timestamp-based concurrency control. The

timestamp of a transaction is used as the

transaction log’s sequence number, and each

node has a watermark of the committed log

sequence. When a transaction request is sent

to a node, it first executes the transaction

locally and buffers the result in memory.

Then, it sends the transaction log to the

other nodes via the broadcasting service.

The node flushes the buffer of transactions

and updates the watermark of committed

logs as soon as it receives approval from all

the other nodes.

BigchainDB [42] uses MongoDB [3] as its

storage engine. That is, each node maintains

its local MongoDB database, as shown in

Figure 2. MongoDB is used due to its

support for assets, which is the main data

abstraction in BigchainDB. Tendermint [8]

is used for consensus among the nodes in

BigchainDB. Tendermint is a BFT

consensus protocol and it guarantees that

when one node is

Figure 3: BlockchainDB

controlled by a malicious hacker, the

MongoDB databases in the other nodes will

not be affected. When a node receives an

update request from a user, it first generates

the results locally and makes a transaction

proposal to be sent to the other nodes via

Tendermint.

The node commits the buffered result and

responds to the user client as soon as most

of the nodes in BigchainDB reach a

consensus on this transaction.

BlockchainDB [30] adopts a design that

builds a shared data ase on top of a

blockchain. It is different from the other

systems because it partitions the database

into a few shards, as shown in Figure 3,

such that the overall storage overhead is

reduced. While some storage is saved, this

design induces a higher latency since a data

request may need to do an additional lookup

to locate the corresponding shard. In

BlockchainDB, each peer integrates a shard

manager to locate the shard where a specific

key is located. In terms of verification, it

provides both synchronous (online) and

asynchronous (offline) verification which is

done in batches.

FalconDB [46] is a system that provides

auditability and verifiability by requiring

both the server nodes and the clients to keep

a digest of the data. The server nodes of

FalconDB keep the shared database and a

blockchain to record the update logs of the

shared database. Client nodes only hold the

block headers of the blockchain kept by the

server nodes . Using these headers, the

clients are able to verify the correctness of

the data obtained from the server nodes.

These client nodes act as intermediaries

between the users and the actual database.

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3301

ChainifyDB [37] proposes a new transaction

processing model called Whatever-Ledger

Consensus (WLC). Unlike other processing

models, WLC makes no assumptions about

the behavior of the local database. The main

principle of WLC is to seek consensus on

the effect of transactions, rather than the

order of the transactions.

When a ChainifyDB server receives a

transaction from a client, it asks for help

from the agreement server to validate the

transaction and then sends a transaction

proposal to the ordering server. The

ordering server batches the proposals into a

block with FIFO order and distributes the

block via Kafka [20]. When the transaction

is approved by the consensus server, it will

finally be executed in-order in the execution

server’s underlying database.

At a high level, Blockchain Relational

Database [31] is very similar to Veritas [22] .

However, in Blockchain Relational

Database [31] (BRD), the consensus is used

to order blocks of transactions, and not to

serialize transactions within a single block.

The transactions in a block of BRD are

executed concurrently with Serializable

Snapshot Isolation (SSI) on each node and

they are validated and committed serially.

PostgreSQL [5], which supports Serializable

Snapshot Isolation, is used as the underlying

storage engine in BRD.

The transactions are executed independently

on all the "untrusted" databases, but then

they are committed in the same serializable

order via the ordering service.

2.2 Ledger Databases

Different from hybrid blockchain database

systems, ledger databases [6, 12, 26, 44, 48]

are centralized, as the ledger is kept by a

single organization. In this paper, we briefly

describe some of the existing ledger

databases. However, we are not evaluating

and analyzing their performance.

Amazon Quantum Ledger Database [6]

(QLDB) contains an immutable journal that

documents every data change in a precise

and sequential manner. The journal is made

up of append-only blocks that are arranged

in a hash chain. This means that data can

only be appended to the journal and cannot

be overwritten or deleted. The entire journal

is designed as a Merkle Tree, allowing users

to trace and check the integrity of data

changes.

Immudb [12] is a lightweight, high-speed

immutable database with built-in

cryptographic proof and verification.

Immudb is written in pure Go, with

BadgerDB [17] as its storage engine.

Badger is a fast key-value database

implemented in pure Go, which uses an

LSM tree structure. Immudb guarantees

immutability by using a Merkle Tree

structure internally where data is hashed

with SHA- 256. Moreover, immudb builds a

consistency checker to check the correctness

of data periodically.

Spitz [48] is a ledger database that supports

a tamper-evident and immutable journal of

transactions. It uses Forkbase [43] as its

underlying storage, which provides a git-

like multi-version control for data. Spitz

provides a cell store for storing data and an

append only ledger to store the journal of

transactions. Moreover, it builds a Merkle

Tree based on the ledger to provide

verifiability.

LedgerDB [44] is a centralized database

from Alibaba Group. It uses TSA time

notary anchors to provide auditability.

These anchors are generated by a two-way

peg protocol [41]. What is different in

LedgerDB compared to the previous ledger

databases is that it supports not only create,

update, and query methods but also purge

and occult methods for verifiable data. With

these methods, LedgerDB aims to meet the

requirements of the real world. However, it

may destroy immutability while providing

strong verifiability. As for the underlying

storage, LedgerDB supports file systems

including HDFS [39], key-values stores

such as RocksDB [2], Merkle Patricia Tree

[47] and a linear-structured append-only file

system called L-Stream [44] which is

specially designed for LedgerDB.

III. SYSTEMS UNDER TEST

In this section, we describe the systems

analyzed in this paper. We start with Veritas

(Kafka) which uses Apache Kafka for inter-

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3302

node communication. Then we describe our

modification of this system into Veritas

(TM) which uses Tendermint for the

broadcasting service. Next, we present our

implementation of BlockchainDB. We end

by describing the existing implementation

of BigchainDB.

3.1 Veritas (Kafka)

3.1.1 Overview. As shown in Figure 1, the

key components of Veritas are the server

nodes, client nodes, timestamp service, and

broadcasting service. Our implementation,

named

Veritas (Kafka)

uses Apache Kafka [20], a CFT pub-sub

system, as broadcasting service. Next, we

describe the functionality of each

component of Veritas.

Server nodes keep both the shared database

and the full ledger that contains all the logs

of the transactions done on the shared

database. Server nodes handle query and

update requests received via the client nodes.

They also need to provide proofs of data

integrity and accuracy as part of the verify

requests.

Client nodes

act as intermediaries between users and

server nodes. Upon getting a request, a

client node first gets a global timestamp

from the timestamp service. This timestamp

represents the unique identifier of the

transaction throughout its lifetime.

Timestamp service

generates global timestamps used by the

client nodes. This service needs to provide

unique monotonically increasing times

tamps. Moreover, this service should exhibit

strong availability and high performance.

Broadcasting service

gets local transaction logs from a server

node and distributes them to all the other

server nodes. Similar to the timestamp

service, it should exhibit strong availability

and high performance.

When a transaction contains an update

operation, the server node first executes the

transaction locally and buffers the result in

memory. Then, it sends the transaction log

to the broadcasting service which distributes

it to the other server nodes. When the initial

server node receives the approvals from all

the other server

nodes, it commits the buffered result to the

local database and appends the transaction

log to the ledger.

3.1.2 User API. Veritas treats all user

requests as transactions [22].

Each transaction contains one or more

operations. The operations supported by

Veritas are shown in Table 2 and explained

in the following lines. Begin starts a

transaction using the user’s signature.

It returns a transaction handler to deal with

the next operations of the transaction.

Commit finalizes a transaction. It has two

modes of operation. The first mode is

synchronous, where the user needs to wait

for the transaction commit result. The

second mode is asynchronous, where the

user does not need to wait for the result of

the Commit operation. When the user is

using the asynchronous Commit, she needs

to use the Query operation to get the result

of the entire transaction. Query checks the

status of a transaction. As all the transaction

logs are stored in the ledger, Veritas can

easily find whether the specified transaction

is committed or aborted.

Set updates the value of a specified key. The

value is linked to the transaction unique

identifier, which is recorded on the ledger.

Get retrieves the value of a specified key. In

our implementation of Veritas, we guarantee

that the user reads the latest committed

value of the key. Verify traces the proof path

of the specified key in the Merkle Tree.

Users can verify the correctness of the value

by calculating the root digest of the proof

path, and then compare the result with the

expected root digest.

3.1.3 Implementation Details. We

implemented Veritas (Kafka) in 804 lines of

Go code, using Redis [10] (v6.2.1) as the

underlying database for shared tables. Redis

is an in-memory key-value store that

exhibits very high throughput, of up to

100,000 operations per second [4]. To store

the ledger, we use BadgerDB [17] which is

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3303

a database engine based on LSM trees and

optimized for SSD.

BadgerDB stores the keys and values

separately to reduce the IO cost. Moreover,

it stores pointers to the values in the LSM

tree to save the compaction cost.

In the original design of Veritas [22], the

ledger is stored using a Merkle Tree [29].

While it is easy to verify that something is

part of a Merkle Tree, it takes more effort to

prove that something is not in the tree. For

this reason, we adopt a Sparse Merkle Tree

[15] in our implementation. This kind of

tree contains a leaf for every possible result

of a cryptographic hash function, making it

easy to show that certain data is not part of

the tree. On the other hand, a Sparse Merkle

Tree needs more storage space compared to

a Merkle Tree.

The timestamp service implementation is

based on Timestamp Oracle (TSO) [32]

which ensures that the clock assigned to an

event will not repeat. In Veritas, this

timestamp service ensures that a unique and

monotonically increasing timestamp is

applied

to each transaction. Other systems, such as

TiDB [25, 33], also use Timestamp Oracle.

In our implementation, the TSO is crash

fault-tolerant by using a persisted write-

ahead log. The broadcasting service is based

on Apache Kafka [20] (v2.7.0), which is a

distributed messaging system that provides

high through put. Kafka ensures crash fault

tolerance (CFT) by persisting the messages

to the disk and replicating them across

nodes.

3.1.4 Complexity Analysis. Next, we analyze

the complexity of Veritas (Kafka) in terms

of the number of messages the nodes need

to exchange per block of updates. We

suppose there are 𝑁 Veritas server nodes, 𝐾

Kafka nodes, and the replication factor of

Kafka is 𝑅. In practice, this replication

factor is set to three [1]. In Veritas (Kafka),

a node sends a block of updates to the Kafka

service. Besides replicating it on 𝑅 replicas,

the Kafka service sends the block to 𝑁 −1

Veritas nodes. Each node checks and

applies the updates, after which it sends an

acknowledgement to Kafka. Then, Kafka

sends each of the 𝑁 − 1 acknowledgements

to the other 𝑁 − 1 nodes, resulting in a

message complexity of (𝑁 2) for Veritas

(Kafka).

This result is backed by experimental

evaluation in Section 4.3. In terms of

storage complexity, we note that each block

is persisted in the Sparse Merkle Tree of

each Veritas node, and also on 𝑅 Kafka

nodes. Hence, the storage complexity is (𝑁

+ 𝑅).

3.2 Veritas (TM)

3.2.1 Overview. In general, blockchains

operate in a Byzantine environment [18, 35].

Hence, using a CFT broadcasting service or

consensus protocol, such as Apache Kafka

or Raft, is unsuitable. That is why we

implement Veritas with Tendermint [8], a

BFT consensus protocol used by other

systems, such as BigchainDB [42] and

FalconDB [46]. Tendermint is a BFT

middleware that supports a state transition

machine. Similar to other BFT systems,

Tendermint supports up to 1/3 malicious

nodes in the network. Figure 4 depicts the

architecture of Veritas (TM). We use

Tendermint Core as the consensus and

broadcasting service and an Application

BlockChain Interface (ABCI) application

integrated with the Veritas node to interact

with Tendermint. A Get request is served

directly by the Veritas node. In contrast, a

Set transaction is sent to Tendermint via

ABCI. When the transaction is included in a

block and delivered back to the Veritas node

via ABCI, it is applied to the local (Redis)

database. This mechanism ensures a serial

con currency control in Veritas (TM).

Different from Veritas (Kafka), we do not

use a timestamp oracle (TSO) service in

Veritas (TM). Such a TSO service is

centralized in nature, thus, incompatible

with a BFT setting.

3.2.2 Implementation Details. Veritas (TM)

is implemented in 517 lines of Go code,

with Tendermint [8] (v0.35.0) as its

consensus service, which is to be consistent

with BigchainDB. The ledger module,

verifiable data structure, concurrency

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3304

control, and local database are the same as

for Veritas (Kafka). That is, we use a Sparse

Merkle Tree as the verifiable data structure

and Redis (v6.2.1) as local database.

3.2.3 Complexity Analysis. The message

complexity of Veritas (TM) is determined

by the complexity of Tendermint, which is

shown to be 𝑂(𝑁 3) by a recent study [7],

where 𝑁 is the number of nodes in the

system. We shall see in Section 4.3 that the

performance of Veritas (TM) decreases

drastically with the number of nodes. We

attribute this to the message complexity of

Tendermint. The storage complexity of

Veritas (TM) is 𝑂(𝑁) since each block is

stored on all 𝑁 nodes.

3.3 BlockchainDB

3.3.1 Overview. As shown in Figure 3, a

BlockchainDB [30] node is mainly

composed of a storage layer and a database

layer. The storage layer uses an off-the-shelf

blockchain as a shared data base which

provides tamper-proof and de-centralized

storage. A blockchain connector component,

which is implemented for differ ent

blockchain clients, handles the interactions

with the blockchain network. The database

layer is built on top of the storage layer with

a simple read/write interface to access data

from a shared table. The database layer in

BlockchainDB is responsible for handling

the Set and Get requests from clients.

Different from all the other systems under

test, BlockchainDB supports sharding. A

sharding manager component defines a

partition scheme based on a hash algorithm

and stores the connection information for

each shard.

3.3.2 User API. As shown in Table 3,

BlockchainDB [30] supports three

operations, namely, Set, Get, and Verify.

The Set method writes a key-value pair to

the given shared table and returns a

correspond ing blockchain transaction id.

The Get method retrieves the data

corresponding to a key from the given

shared table. The Verify method allows

users to check the status of the given

transaction id to verify if the operation was

successfully committed.

3.3.3 Implementation Details. In this paper,

BlockchainDB is implemented in Go, where

each node runs an RPC server serving

clients requests. We use a private Ethereum

(geth/v1.8.23-stable) blockchain with Proof-

of-Authority (PoA) consensus as the storage

for experiments. A KVStore contract as

defined in [30] is installed on the Ethereum

network.

3.3.4 Complexity Analysis. BlockchainDB is

a sharded system, hence, we analyze the

communication and storage overhead for a

single shard. The total overhead is the sum

of the overheads of each shard. Given the

Ethereum backend used by BlockchainDB,

the communication complexity is (𝑁),

where 𝑁 is the number of nodes in a shard.

This is due to the block broadcasting phase

in Ethereum. The storage complexity is (𝑁)

since the ledger is stored by each node.

3.4 BigchainDB

3.4.1 Overview. As shown in Figure 2, a

BigchainDB node consists of three key

components, namely, the server, consensus

component (Tendermint), and local database

(MongoDB). BigchainDB Server provides

an HTTP service that handles user requests.

This service uses the Flask [23] web

application framework working with Web

Server Gateway Interface (WSGI) of

Gunicorn [11] to expose an HTTP API.

Tendermint Consensus Component

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3305

provides a broadcasting service for the

transaction blocks. It has the role of a bridge

among BigchainDB nodes and it is

responsible for proposing new transaction

blocks and ensuring that all nodes agree on

a block in a Byzantine fault-tolerant manner.

After validating a transaction block, the

Tendermint component sends a commit

message to the local BigchainDB server to

signal the commit of the transactions.

MongoDB Database Component persists

the data which can only be modified by the

local BigchainDB server.

The exposed API of the MongoDB

component is determined by the local

BigchainDB server. Different MongoDB

instances may provide different functions.

BigchainDB uses a concept called

blockchain pipelining, which improves

scalability when voting for the next blocks.

In a blockchain, the transaction blocks are

ordered which means that nodes cannot vote

for a new block while the current block is

undecided. This is because the new block

needs to have a reference to a decided block.

In BigchainDB, the blocks are also ordered,

but server nodes are allowed to vote for a

new block even if the current block is

undecided. Using a voting list created at the

same time with a block, expected voters are

tracked while the list contains a refer ence to

the current unsettled block. However, when

voting for a block with an undecided parent

block, a node has to verify that the block

does not contain transactions with

dependencies in the undecided block. This

is a form of concurrency control adopted by

BigchainDB [42]. We shall see in the next

section that the validation process in

BigchainDB slows down the entire system.

The transaction flow in BigchainDB can be

described as follows. When a BigchainDB

server receives an HTTP request with a

trans action, it first performs some checks to

validate the transaction.

That is, the node checks if this is not a

duplicate transaction in both the transaction

queue and the ledger. It also checks the

inputs and outputs of the transaction. Next,

it calls the Broadcast API provided by the

local Tendermint component for the

broadcasting of transactions. After receiving

the commit message of the transaction from

the Tendermint component, the server

updates the state of the local MongoDB

instance.

3.4.2 User API. As shown in Table 4,

BigchainDB supports three operations:

query, create, and transfer. Query retrieves

the details of a transaction based on its

transaction id. If the transaction has been

committed, a BigchainDB server returns the

details of the transaction. Otherwise, a 404

error code is returned. Create has the role to

create assets for the specified user and to

store them in BigchainDB. A Create

transaction supports three modes, namely,

async, sync, and commit. The default mode

is async where a BigchanDB server

responds before the Tendermint component

validates the transaction. In sync mode, a

BigchainDB server responds after the

transaction block has been committed and

the state in the MongoDB instance has been

modified. Lastly, in commit mode, a

BigchainDB server responds after checking

the validation process of the block

containing the transaction. Finally, Transfer

has the role to transfer assets from one user

to another. It also provides the same three

modes for transaction processing as the

Create API.

3.4.3 Implementation Details. In this paper,

we use the open-source BigchainDB [42]

(v2.2.2) with MongoDB [3] (v4.4.4) and

Tendermint [8] (0.31.5). In addition to the

standard system, we also evaluate

BigchainDB with Parallel Validation feature

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance

of the five systems described in the previous

section, namely, Veritas (Kafka), Veritas

(TM), BigchainDB, BigchainDB (PV), and

BlockchainDB. Next, we describe the

experimental setup.

4.1 Setup

All the experiments are executed on a local

machine under Ubuntu 18.04 operating

system (OS). The machine has 256 physical

CPU cores, 8 TB of RAM, and 3TB of hard-

disk (HDD) storage. Using iostat tool, the

IOPS of the machine is estimated at 5.35.

All the server and client nodes of the

systems under test are running on this

machine in Docker containers on different

CPU cores.

To evaluate the performance of the five

systems under test, we send 100,000

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3306

transactions to each system. We send

multiple transactions in parallel to a system,

based on a concurrency parameter that

represents the number of clients. The

transactions are evenly distributed to

different server nodes in the system. To

compute the throughput, we record the start

time of the first transaction and the

completion time of all the transactions.

Then, we record the number of successfully

committed transactions and compute the

throughput by dividing this number by the

previously recorded time interval. Note that

we only consider successful transactions

when computing the throughput, but there

may be failures as well.

We repeat each experiment three times and

report the average. Before executing the

transactions, we load 100,000 key-value

records of 1,000 bytes each into each system.

We use the Yahoo! Cloud Serving

Benchmark [13] (YCSB) dataset which is

widely used to benchmark databases and

blockchains [19, 35]. YCSB supports

common database operations such as write

(insert, modify, and delete), and read. While

YCSB defines six workloads, in our

experiments, we choose three of these six

workloads. These three workloads are (i)

Workload A which consists of 50% update

operations and 50% read operations, (ii)

Workload B which consists of 5% update

operations and 95% read operations, and (ii)

Workload C which consists of 100% read

operations. Moreover, we use three key

distributions, namely, (i) uniform

distribution which operates uniformly on all

the keys, (ii) zipfian distribution which

operates frequently only on a sub-set of the

keys, and (iii) latest distribution which

operates on the latest used keys. We use

Workload A and uniform distribution by

default, unless otherwise specified.

The benchmarking tools are implemented

by us in Go using goroutines [14] and a

channel [14] as a concurrent safe request

queue. A channel allows goroutines to

synchronize without explicit locks or

condition variables. Each benchmarking

client is represented by a goroutine and it

gets a new request from the channel once it

completes the current request.

4.2 Effect of Number of Clients

We first analyze the effect of increasing the

number of client nodes to determine the

saturation points of the systems. In this

experiment, we set the number of server

nodes in each system to four. This number

is derived based on the fact that BFT

systems supporting up to 𝑓 faulty nodes

need to have a total of at least 3𝑓 +1 nodes.

Hence, for tolerating one faulty node, we

need four nodes in the system.

For consistency, we also set the number of

Veritas (Kafka) server nodes to four. We

use YCSB Workload A with uniform

distribution and set the block size of the

ledger to 100 transactions. We then increase

the number of clients from 4 to 256.

Figures 5a and 5b show the effect of

increasing the number of clients on

throughput and latency, respectively. We

observe that the throughput of the BFT

systems plateaus after using a certain

number of clients, while for Veritas (Kafka)

it is growing even if at a slow pace. These

results are partially correlated with the

latency:

we observe a sharper increase in the latency

of the BFT systems when using more than

32 clients. Compared to BigchainDB, the

throughput of Veritas (TM) becomes much

higher starting from 32 clients. Even if both

Veritas (TM) and BigchainDB use

Tendermint as the underlying consensus

protocol, their performance is very different.

Veritas (TM) achieves its top performance

of 1,742 TPS with 256 clients, while

BigchainDB only achieves 175 TPS and this

when using four clients. Increasing the

number of clients in BigchainDB results in a

sharp increase in latency while the

throughput remains relatively constant.

To investigate the reasons for BigchainDB’s

low performance, we analyze the time spent

in each major component of a hybrid

blockchain database system. As presented in

Section 2, each node of such a hybrid

system has an underlying shared database, a

ledger data structure and storage, and a

consensus or broadcasting component. As

shown in Figure 6, Veritas (Kafka), Veritas

(TM), and BlockchainDB spend 45%, 55%,

and 99% of their time in the con

sensus component. On the other hand,

BigchainDB spends 38% of its time

validating transactions, as part of the ledger

component. For example, BigchainDB

checks for duplicate transactions both in the

transaction queue (in memory) and in the

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3307

database (in MongoDB, on disk). This

operation is very costly and implies

sequential processing. That is why the

latency increases significantly when more

transactions are sent to the system at the

same time (when increasing the number of

clients). In BigchainDB (PV), transactions

are checked in parallel but the overhead of

parallel processing is around 11%. This,

together with other ledger operations lead to

33% of the time spent in the ledger

component. The database part in

BigchainDB (PV) is much lower compared

to BigchainDB due to the bulk storage of

transactions. However, the consensus

accounts for 58.5% in BigchainDB (PV)

compared to 35% in BigchainDB. We

attribute this to the larger consensus

message size in BigchainDB (PV) compared

to BigchainDB.

Secondly, we observe that the performance

of Veritas (Kafka) is more than 10× higher

compared to the BFT systems. In particular,

Veritas (Kafka) exhibits a maximum of

27,335 transactions per second (TPS) when

256 clients are used, while Veritas (TM)

achieves 1,742 TPS with 256 clients.

BigchainDB and BigchainDB (PV) exhibit a

maximum of 175 and 174 TPS, respectively,

when using four clients. On the other hand,

BlockchainDB achieves only 30 TPS, but

this is expected due to the use of Ethereum

as the underlying data storage. Even when

using the PoA consensus, the throughput of

Ethereum is below 100 TPS [19]. In terms

of average latency, the corresponding values

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3308

are 74, 1139, 400, 23, and 23 milliseconds

(ms) for Veritas (Kafka) with 256 clients,

Veritas (TM) with 256 clients,

BlockchainDB with 256 clients,

BigchainDB and BigchainDB (PV) with

four clients, respectively.

Thirdly, we observe that the throughput of

Veritas (TM) is 10× higher compared to

BigchainDB. As shown in Table 5, the

difference between these two systems is at

storage and concurrency control layers. At

the storage layer, Veritas (TM) is using

Redis, while BigchainDB is using

MongoDB. Redis has a higher through put

than MongoDB, being an in-memory

database. However, the throughputs of

Veritas (TM) and BigchainDB are far lower

than what Redis and MongoDB can support.

To investigate if MongoDB has a significant

negative impact on the performance, we

replace Redis with MongoDB in Veritas

(TM) and run the benchmarking again. The

performance of Veritas (TM) with

MongoDB is up to 22% lower compared to

using Redis. In conclusion, the huge

difference between Veritas (TM) and

BigchainDB is due to the design and

implementation of the latter, especially the

complex and redundant transaction

validation mechanism.

4.3 Effect of Number of Server Nodes

Next, we analyze the effect of increasing the

number of server nodes on throughput and

latency. We start from four nodes, the

minimum number of nodes in a BFT system

to support one faulty node, and increase the

number of nodes up to 64. A network of 64

nodes can support 21 faulty nodes in a BFT

system. Similar to the previous experiment,

we use YCSB Workload A with uniform

distribution and a block size of 100

transactions. We set the number of clients to

256 for Veritas (Kafka), Veritas (TM), and

BlockchainDB, and to four for BigchainDB

and BigchainDB (PV).

As shown in Figure 7, we observe the same

gap in performance among Veritas (Kafka)

and the BFT systems. Note that the latency

of BlockchainDB only includes the time it

takes for a request to be included in the

transaction pool of Ethereum. It does not

include the block confirmation time. The

throughput of Veritas (TM) drops

from 1,722 TPS on four nodes to 292 TPS

on 32 nodes. On 64 nodes, Tendermint

(v0.35.0) stops working due to

synchronization errors among the peers.

Again, this trend can be explained by the

high message complexity of Tendermint,

namely, (𝑁 3), where 𝑁 is the number of

nodes. In BigchainDB and BigchainDB

(PV), the impact of Tendermint is amortized

because the system is slow in sending new

transactions to the consensus component. As

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3309

explained before, BigchainDB and

BigchainDB (PV) perform complex and

redundant transaction validations which

slow down the entire system.

In Veritas (Kafka), the throughput increases

with the number of server nodes, from

25,009 TPS on four nodes to 41,262 TPS on

32 nodes. On 64 nodes, the throughput

decreases to 38,283 TPS. We attribute this

to the interplay between the number of

server nodes and the Kafka broadcasting

service. With four server nodes, there are

not enough transactions exchanges to

saturate Kafka which supports up to

200,000 messages per second. Also, there

are too few server nodes to process the

transactions as opposed to 32 nodes that can

process more transactions. But when we

increase the number of nodes beyond 32,

Kafka starts to become a bottleneck. For

example, with 64 nodes, there are close to

100,000 writes and 6,200,000 reads in the

Kafka service.

In Figure 8, we plot the number of read and

write operations in Kafka as the number of

server nodes in Veritas (Kafka) grows,

using a logarithmic scale. The number of

write operations grows linearly with the

number of server nodes because, for each

transaction sent by a node, the other 𝑁 − 1

nodes need to write (send) an

acknowledgment to Kafka. On the other

hand, the number of read operations grows

quadratically with the number of server

nodes. This is because each of those 𝑁 − 1

acknowledgments are read by all the other

𝑁 − 1 nodes in the system. This results in a

message complexity of (𝑁 2) in Veritas

(Kafka), where 𝑁 is the number of server

nodes.

4.4 Effect of Access Distributions

In this section, we evaluate the performance

of the five systems with different access

distributions, namely uniform, latest, and

zipfian with a coefficient of 0.5. As shown

in Figure 9, we do not observe significant

differences among these distributions. This

can be explained by the fact that there is no

significant number of aborted transactions

in the evaluated systems. For example,

Veritas (TM) and BlockchainDB exhibit no

aborted transactions due to the serial

transaction commit. Even in Veritas (Kafka)

with MVCC, there are up to 20 aborted

transactions out of 100,000 total

transactions, when using the zipfian

distribution. We attribute this low number

of conflicts to the fact that the version

control is based on the centralized global

timestamp service. This, combined with a

fast Kafka delivery service, make conflicts

unlikely.

In Veritas (Kafka), serialization is

guaranteed by the broadcasting service.

Server nodes send both new blocks and

approvals of blocks concurrently, with no

blocking. When a server node receives a

new block, it first checks the conflicts

between the transactions in that block and

the current state of the underlying database.

If there is no conflict, it sends an approval

message with its signature via Kafka and

buffers this block in memory. If there are

conflicts, the server node sends an abort

message via Kafka. The block is finally

committed once the server node receives all

the approval messages from the other server

nodes. Hence, conflict checking and new

block generation happen in parallel in

Veritas (Kafka). But this leads to more

conflicts and these conflicts are detecting

during the checking phase.

4.5 Effect of YCSB Workloads

Next, we evaluate the performance of the

five systems with three different YCSB

workloads, namely, Workload A, Workload

B, and Workload C. The number of

transactions in each block of the shared log

is 100, the number of server nodes is set to

four, and the number of clients in each

system are those that exhibit the best

performance. As expected, all the systems

exhibit higher performance when the

number of read operations is higher. Recall

that the proportion of read operations is

50%, 95%, and 100% in Workloads A, B,

and C, respectively. As shown in Figure 10,

the gap between Veritas (Kafka) and Veritas

(TM) becomes smaller as the number of

read (or Get) operations is higher. For

example, Veritas (TM) achieves higher

throughput with Workload C compared to

Veritas (Kafka). This is because Get

operations are served immediately by

Veritas (TM), while Veritas (Kafka) needs

to apply the MVCC mechanism that

introduces a delay. For the same reason of

serving Get operations immediately,

BlockchainDB achieves an impressing

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3310

throughput of 13,124 TPS with Workload C,

compared to just 30 TPS with Workload A.

On the other hand, BigchainDB achieves

only 257 TPS with Workload C. We

attribute this to the complex asset query in

MongoDB used by BigchainDB to serve a

Get operation.

V. DISCUSSION

In this section, we discuss some trade-offs

that users and developers need to consider

when using and designing a hybrid

blockchain database system. We look at

these trade-offs from the perspective of

performance, security, and ease of

development.

CFT vs. BFT. Adopting a CFT or BFT

consensus protocol depends on the

environment where the system is supposed

to operate. Nonetheless, it is well-known

that BFT consensus is much slower than

CFT consensus [16, 35]. In this paper, we

show that the gap between the CFT and

BFT systems throughput is 5 − 500×. We

also show that the performance of both CFT

and BFT systems degrades under poor real-

world networking conditions. While typical

blockchains employ BFT consensus

protocols due to their security guarantees in

a Byzantine environment, some

permissioned blockchains such as

Hyperledger Fabric [21] and R3 Corda [24]

are employing CFT consensus protocols,

while delegating the security aspects to the

blockchain access/membership layer. When

choosing BFT, the main focus of a

developer is on optimizing the performance

since the security guarantees are relatively

high. Query optimization and using high-

performance underlying storage are the

common methods of optimizing such

systems. Optimizing the performance of the

BFT consensus is an important aspect that is

studied in recent works [8, 28, 45]. In

contrast, CFT protocols usually provide

high performance and developers need to

add verifiable components to provide

security guarantees such as building an

append-only ledger to provide verifiability.

In summary, CFT hybrid blocAkchain

database systems should be used when there

is a demand for high performance without

strict security guarantees, such as in online

transaction processing (OLTP) systems.

When starting with an existing CFT system,

the developer can add blockchain features,

such as an append-only ledger, to improve

security. BFT hybrid blockchain database

systems should be used when there is a need

for high security, such as for digital assets

storage. When starting with an existing BFT

system, the developer can add database

features, such as parallel validation and

query optimization, to improve the

performance.

VI. CONCLUSIONS

ResMilitaris,vol.12,n°, 6 ISSN: 2265-6294 Spring (2022)

 3311

In this article, we examine the hybrid

blockchain database solutions that have

been put out by the database community in

recent years.

Next, using Veritas as a basis, we do an

extensive performance study of five hybrid

blockchain database system

implementations [22],

BigchainDB [42], and BlockchainDB [30].

We may alter the system's essential

elements, such the underlying database and

consensus middleware, to examine how they

affect performance thanks to our adaptable

Veritas implementation. For instance, we

find that performance decreases by more

than 15× when we switch out the CFT

Apache Kafka middleware with the BFT

Tendermint middleware.

Nonetheless, Tendermint provides security

assurances inside a Byzantine setting.

However, we find that there are only minor

performance changes when we use

RediSQL and MongoDB in lieu of the

underlying Redis database. This indicates

that the consensus procedures are the cause

of the systems' subpar performance, along

with a breakdown of the time spent in each

key component of a hybrid blockchain

database system.

REFERENCES

[1] Apache Kafka, Documentation,

https://archive.fo/tYpo6, 2021.

[2] Facebook Open Source, RocksDB,

https://rocksdb.org/, 2021.

[3] MongoDB Inc., MongoDB,

https://www.mongodb.com/, 2021.

[4] Redis Labs, Redis,

https://redis.io/topics/benchmarks, 2021.

[5] The PostgreSQL Global Development

Group, PostgreSQL, https://www.

postgresql.org/, 2021.

[6] Amazon, Amazon Quantum Ledger

Database (QLDB), https://aws.amazon.com/

qldb/, 2021.

[7] Y. Amoussou-Guenou, A. D. Pozzo, M.

Potop-Butucaru, S. Tucci Piergiovanni,

Dissecting Tendermint, M. F. Atig, A. A.

Schwarzmann, editors, Proc. of 7th

International Conference on Networked

Systems, volume 11704 of Lecture Notes in

Computer Science, pages 166–182, 2019.

[8] E. Buchman, Tendermint: Byzantine

Fault Tolerance in the Age of Blockchains,

PhD thesis, The University of Guelph, 2016.

[9] V. Buterin, A Next-Generation Smart

Contract and Decentralized Application

Platform, http://archive.fo/Sb4qa, 2013.

[10] J. L. Carlson, Redis in Action,

Manning Shelter Island, 2013.

[11] B. Chesneau, Gunicorn,

https://gunicorn.org/, 2021.

[12] CodeNotary, immudb,

https://codenotary.io/technologies/immudb/,

2021.

[13] B. F. Cooper, A. Silberstein, E. Tam, R.

Ramakrishnan, R. Sears, Benchmarking

Cloud Serving Systems with YCSB, Proc.

of 1st ACM Symposium on Cloud

Computing, page 143–154, 2010.

[14] K. Cox-Buday, Concurrency in Go:

Tools and Techniques for Developers,

O’Reilly Media, Inc., 1st edition, 2017.

[15] R. Dahlberg, T. Pulls, R. Peeters,

Efficient Sparse Merkle Trees: Caching

Strategies and Secure (Non-)Membership

Proofs, Cryptology ePrint Archive, Report

2016/683, 2016.

[16] H. Dang, T. T. A. Dinh, D. Loghin, E.-

C. Chang, Q. Lin, B. C. Ooi, Towards

Scaling Blockchain Systems via Sharding,

Proc. of 2019 International Conference on

Management of Data, page 123–140, 2019.

[17] Dgraph, BadgerDB,

https://github.com/dgraph-io/badger, 2021.

[18] T. T. A. Dinh, R. Liu, M. Zhang, G.

Chen, B. C. Ooi, J. Wang, Untangling

Blockchain: A Data Processing View of

Blockchain Systems, IEEE Transactions on

Knowledge and Data Engineering,

30(7):1366–1385, 2018.

[19] T. T. A. Dinh, J. Wang, G. Chen, R.

Liu, B. C. Ooi, K.-L. Tan, BLOCKBENCH:

A Framework for Analyzing Private

Blockchains, Proc. of 2017 ACM

International Conference on Management of

Data, page 1085–1100, 2017.

[20] A. S. Foundation, Kafka,

https://kafka.apache.org/, 2017.

