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ABSTRACT 

We seek to give a thorough examination of 

the trade-offs and performance of a few 

typical hybrid blockchain database systems. 

We implement Veritas and BlockchainDB 

from the ground up in order to accomplish 

this goal. We offer two flavours of Veritas 

to cater to the application situations of crash 

fault-tolerant (CFT) and byzantine fault-

tolerant (BFT). To be more precise, we use 

Veritas with Tendermint to target BFT 

application situations and Veritas with 

Apache Kafka to target CFT application 

scenarios. We contrast these three platforms 

with the current BigchainDB open-source 

implementation. BigchainDB offers two 

versions: an optimised version with 

concurrent transaction validation and 

blockchain pipelining, and a default 

implementation that leverages Tenemint for 

consensus. 

The results of our experimental 

investigation verify that BFT designs, which 

are unique to blockchains, perform 

significantly worse than CFT designs, which 

are generally utilised by distributed 

databases. However, our thorough research 

also reveals the range of design options that 

the developers had to consider and helps to 

clarify the trade-offs that must be made 

when creating a hybrid blockchain database 

system. 

I. INTRODUCTION  

In the last few years, a handful of systems 

that integrate both dis tributed databases and 

blockchain properties have emerged in the 

academic database community [22, 30, 31, 

37, 42, 46]. These systems, termed hybrid 

blockchain database systems, are either 

adding data  base features to existing 

blockchains to improve performance and 

usability or implement blockchain features 

in distributed databases to improve their 

security [35]. However, there is little 

comparison among these systems. In this 

paper, we aim to fill this gap by providing 

an in-depth analysis of a few representative 

hybrid blockchain database systems.  

To achieve this goal, we first have to 

overcome a challenge: only one such system, 

namely BigchainDB [42] is open-source.  

Moreover, by the time of writing this paper, 

we did not manage to get the source code of 

any other hybrid blockchain database 

system. Hence, we undertake the tedious 

task of implementing Veritas [22] and 

BlockchainDB [30]. By doing so, we gain 

the flexibility of changing some parts of the 

systems to better compare them to other 

systems. For example, we can change the 

underlying database from a relational SQL 

type to a NoSQL type. Or we can change 

the consensus mechanism from crash fault-

tolerant (CFT) to Byzantine fault-tolerant 

(BFT).  

The original design of Veritas uses Apache 

Kafka [20], which is a CFT service, as the 

broadcasting service among server nodes. 

That is, when a server node needs to update 

its local shared database as a result of a 

transaction’s execution, it sends this update 

to all the other server nodes via the Kafka 

service. Moreover, the other server nodes 

send their agreement or disagreement 

regarding that update via the Kafka service. 

Apache Kafka uses a primary backup 

mechanism to achieve CFT. Hence, it has 

high efficiency at the cost of decreased 

liveness. On the other hand, most 

blockchain systems adopt a BFT consensus 

mechanism. Hence, we also implement a 

version of Veritas where Tendermint [8], 

which is a BFT consensus, is used as 

middleware, similar to BigchainDB [42].  

BlockchainDB [30] implements a shared 

(and sharded) database on top of a classic 

blockchain. The  atabase interface provides  

a simple key-value store API to the user, 

similar to Veritas and BigchainDB. The 

blockchain layer is flexible, being able to 

interact with different blockchains, such as 

Ethereum [9] and Hyperledger Fabric [21]. 
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In this paper, as well as in [30], 

BlockchainDB uses Ethereum as its 

underlying blockchain.  

BigchainDB introduces two optimizations. 

The first optimization, called blockchain 

pipelining, allows nodes to vote for a new 

block while the current block of the ledger 

is still undecided. Each node will just 

reference its last decided block when voting 

for a new block. By doing so, the system 

avoids waiting for blocks to be fully 

committed before proposing new blocks. 

Second, BigchainDB includes a flavor 

called BigchainDB with parallel validation, 

or BigchainDB (PV), where transactions are 

validated in parallel on multiple CPU cores. 

These parallel validations should increase 

the throughput, however, we do not observe 

any improvement, as we shall see in our 

experimental analysis.  

In summary, we make the following 

contributions:  

• We survey and qualitatively compare the 

existing hybrid blockchain database systems.  

• We provide flexible implementations of 

BlockchainDB and Veritas. In particular, we 

implement Veritas with Apache Kafka and 

Tendermint as mechanisms to broadcast the 

transactions. While Kafka provides crash 

fault tolerance, Tendermint is designed to 

work in a Byzantine environment, closer  

to what the blockchains are supposed to do.  

• We analyze the performance of five 

systems, namely, Veritas  

(Kafka), Veritas (Tendermint), 

BlockchainDB, BigchainDB, and 

BigchainDB with parallel validation. Our 

analysis exposes the trade-offs to be 

considered by the developers to achieve the 

best performance in their application 

scenario.  

• Among others, we show that Veritas 

(Kafka) exhibits a higher performance 

compared to all the other systems. For 

example, Veritas (Kafka) exhibits close to 

30,000 TPS, while Veritas (TM), 

BigchainDB, and BigchainDB (PV) exhibit 

close to 1,700, 180, and 180 TPS, 

respectively, on networks of four peers. On 

the other hand, BlockchainDB exhibits less 

than 100 TPS. While there is room for 

optimization in all the systems, the 

significant gap in performance between 

CFT and BFT consensus mechanisms will 

be hard to reduce.  

The rest of this paper is organized as 

follows. In Section 2 we survey the existing 

hybrid blockchain database systems. In 

Section 3, we first describe our 

implementations of Veritas and 

BlockchainDB, followed by the existing 

open-source implementtation of 

BigchainDB. In Section 4 we conduct our 

performance analysis. In Section 5 we 

discuss the trade-offs and challenges that 

users and developers encounter when using 

a hybrid blockchain database system. 

Finally, we conclude the paper in Section 6.  

II. BACKGROUND AND 

RELATED WORK  

In the last few years, there have been a few 

works published in database conferences 

that integrate blockchains and databases [22,  

30, 31, 37, 42, 46]. Such systems allow 

companies to do business with peace of 

mind because every database operation is 

tracked by a distributed ledger. However, 

different business scenarios have different 

requirements, and as a result, many hybrid 

blockchain database systems have been built 

for different application scenarios.  

In this section, we describe the existing 

hybrid blockchain database systems and we 

briefly mention some similar systems that 

can be classified as ledger databases.  

2.1 Hybrid Blockchain Database Systems  

Veritas [22] is a shared database design that 

integrates an underlying blockchain (ledger) 

to keep auditable and verifiable proofs.  

The interaction between the database and 

the blockchain is done through verifiers. A 

verifier takes the transaction logs from the  

database, makes a correctness-checking 

decision, and sends it to   the other verifiers. 

The final decision agreed by all the verifiers 

is  
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recorded onto the blockchain. Hence, the 

correctness of the data can be verified based 

on the history stored in the blockchain.  

An alternative design of Veritas [22], which 

is selected by us to be implemented in this 

paper, uses a shared verifiable table as its 

key storage. In this design, each node has a 

whole copy of the shared table and tamper-

proof logs in the form of a distributed ledger, 

as shown in Figure 1. The ledger stores the 

update (write) logs of the shared table. Each 

node sends its local logs and receives 

remote logs via a broadcasting service. The 

verifiable table design of Veritas uses 

timestamp-based concurrency control. The 

timestamp of a transaction is used as the 

transaction log’s sequence number, and each 

node has a watermark of the committed log 

sequence. When a transaction request is sent 

to a node, it first executes the transaction 

locally and buffers the result in memory. 

Then, it sends the transaction log to the 

other nodes via the broadcasting service.  

The node flushes the buffer of transactions 

and updates the watermark of committed 

logs as soon as it receives approval from all 

the other nodes.  

BigchainDB [42] uses MongoDB [3] as its 

storage engine. That is, each node maintains 

its local MongoDB database, as shown in 

Figure 2. MongoDB is used due to its 

support for assets, which is the main data 

abstraction in BigchainDB. Tendermint [8] 

is used for consensus among the nodes in 

BigchainDB. Tendermint is a BFT 

consensus protocol and it guarantees that 

when one node is 

 
Figure 3: BlockchainDB 

controlled by a malicious hacker, the 

MongoDB databases in the other nodes will 

not be affected. When a node receives an 

update request from a user, it first generates 

the results locally and makes a transaction 

proposal to be sent to the other nodes via 

Tendermint.  

The node commits the buffered result and 

responds to the user client as soon as most 

of the nodes in BigchainDB reach a 

consensus on this transaction.  

BlockchainDB [30] adopts a design that 

builds a shared data ase on top of a 

blockchain. It is different from the other 

systems    because it partitions the database 

into a few shards, as shown in Figure 3, 

such that the overall storage overhead is 

reduced. While some storage is saved, this 

design induces a higher latency since a data 

request may need to do an additional lookup 

to locate the corresponding shard. In 

BlockchainDB, each peer integrates a shard  

manager to locate the shard where a specific 

key is located. In terms of verification, it 

provides both synchronous (online) and 

asynchronous (offline) verification which is 

done in batches.  

FalconDB [46] is a system that provides 

auditability and verifiability by requiring 

both the server nodes and the clients to keep 

a digest of the data. The server nodes of 

FalconDB keep the shared database and a 

blockchain to record the update logs of the 

shared database. Client nodes only hold the 

block headers of the blockchain kept by the 

server nodes . Using these headers, the 

clients are able to verify the correctness of 

the data obtained from the server nodes.  

These client nodes act as intermediaries 

between the users and the actual database.  
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ChainifyDB [37] proposes a new transaction 

processing model called Whatever-Ledger 

Consensus (WLC). Unlike other processing  

models, WLC makes no assumptions about 

the behavior of the local database. The main 

principle of WLC is to seek consensus on 

the effect of transactions, rather than the 

order of the transactions.  

When a ChainifyDB server receives a 

transaction from a client, it asks for help 

from the agreement server to validate the 

transaction and then sends a transaction 

proposal to the ordering server. The 

ordering server batches the proposals into a 

block with FIFO order and distributes the 

block via Kafka [20]. When the transaction  

is approved by the consensus server, it will 

finally be executed in-order in the execution 

server’s underlying database.  

At a high level, Blockchain Relational 

Database [31] is very similar to Veritas [22] . 

However, in Blockchain Relational 

Database [31] (BRD), the consensus is used 

to order blocks of transactions, and not to 

serialize transactions within a single block. 

The transactions in a block of BRD are 

executed concurrently with Serializable 

Snapshot Isolation (SSI) on each node and 

they are validated and committed serially. 

PostgreSQL [5], which supports Serializable  

Snapshot Isolation, is used as the underlying 

storage engine in BRD.  

The transactions are executed independently 

on all the "untrusted" databases, but then 

they are committed in the same serializable  

order via the ordering service.  

2.2 Ledger Databases  

Different from hybrid blockchain database 

systems, ledger databases [6, 12, 26, 44, 48] 

are centralized, as the ledger is kept by a 

single organization. In this paper, we briefly 

describe some of the existing ledger 

databases. However, we are not evaluating 

and analyzing their performance.  

Amazon Quantum Ledger Database [6] 

(QLDB) contains an immutable journal that 

documents every data change in a precise 

and sequential manner. The journal is made 

up of append-only blocks that are arranged 

in a hash chain. This means that data can 

only be appended to the journal and cannot 

be overwritten or deleted. The entire journal 

is designed as a Merkle Tree, allowing users 

to trace and check the integrity of data 

changes.  

Immudb [12] is a lightweight, high-speed 

immutable database with built-in 

cryptographic proof and verification. 

Immudb is written in pure Go, with 

BadgerDB [17] as its storage engine. 

Badger is a fast key-value database 

implemented in pure Go, which uses an 

LSM tree structure. Immudb guarantees 

immutability by using a Merkle Tree 

structure internally where data is hashed 

with SHA- 256. Moreover, immudb builds a 

consistency checker to check the correctness 

of data periodically.  

Spitz [48] is a ledger database that supports 

a tamper-evident and immutable journal of 

transactions. It uses Forkbase [43] as its 

underlying storage, which provides a git-

like multi-version control for data. Spitz 

provides a cell store for storing data and an 

append only ledger to store the journal of 

transactions. Moreover, it builds  a Merkle 

Tree based on the ledger to provide 

verifiability.  

LedgerDB [44] is a centralized database 

from Alibaba Group. It uses TSA time 

notary anchors to provide auditability. 

These anchors are generated by a two-way 

peg protocol [41]. What is different in 

LedgerDB compared to the previous ledger 

databases is that it supports not only create, 

update, and query methods but also purge 

and occult methods for verifiable data. With 

these methods, LedgerDB aims to meet the 

requirements of the real world. However, it 

may destroy immutability while providing 

strong verifiability. As for the underlying 

storage, LedgerDB supports file systems 

including HDFS [39], key-values stores 

such as RocksDB [2], Merkle Patricia Tree 

[47] and a linear-structured append-only file 

system called L-Stream [44] which is 

specially designed for LedgerDB. 

 

 
 

III. SYSTEMS UNDER TEST  

In this section, we describe the systems 

analyzed in this paper. We start with Veritas 

(Kafka) which uses Apache Kafka for inter-
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node communication. Then we describe our 

modification of this system into Veritas 

(TM) which uses Tendermint for the 

broadcasting service. Next, we present our 

implementation of BlockchainDB. We end 

by describing the existing implementation 

of BigchainDB.  

3.1 Veritas (Kafka)  

3.1.1 Overview. As shown in Figure 1, the 

key components of Veritas are the server 

nodes, client nodes, timestamp service, and  

broadcasting service. Our implementation, 

named  

Veritas (Kafka)  

uses Apache Kafka [20], a CFT pub-sub 

system, as broadcasting service. Next, we 

describe the functionality of each 

component of Veritas.  

Server nodes keep both the shared database 

and the full ledger that contains all the logs 

of the transactions done on the shared 

database. Server nodes handle query and 

update requests received via the client nodes. 

They also need to provide proofs of data 

integrity and accuracy as part of the verify 

requests.  

Client nodes  

act as intermediaries between users and 

server nodes. Upon getting a request, a 

client node first gets a global timestamp 

from the timestamp service. This timestamp 

represents the unique identifier of the 

transaction throughout its lifetime. 

Timestamp service  

generates global timestamps used by the 

client nodes. This service needs to provide 

unique monotonically increasing times 

tamps. Moreover, this service should exhibit 

strong availability and high performance. 

Broadcasting service  

gets local transaction logs from a server 

node and distributes them to all the other 

server nodes. Similar to the timestamp 

service, it should exhibit strong availability 

and high performance.  

When a transaction contains an update 

operation, the server node first executes the 

transaction locally and buffers the result in 

memory. Then, it sends the transaction log 

to the broadcasting service which distributes 

it to the other server nodes. When the initial 

server node receives the approvals from all 

the other server  

 
nodes, it commits the buffered result to the 

local database and appends the transaction 

log to the ledger.  

3.1.2 User API. Veritas treats all user 

requests as transactions [22].  

Each transaction contains one or more 

operations. The operations supported by 

Veritas are shown in Table 2 and explained 

in the following lines. Begin starts a 

transaction using the user’s signature.  

It returns a transaction handler to deal with 

the next operations of the transaction. 

Commit finalizes a transaction. It has two 

modes of operation. The first mode is 

synchronous, where the user needs to wait 

for the transaction commit result. The 

second mode is asynchronous, where the 

user does not need to wait for the result of 

the Commit operation. When the user is 

using the asynchronous Commit, she needs 

to use the Query operation to get the result 

of the entire transaction. Query checks the 

status of a transaction. As all the transaction 

logs are stored in the ledger, Veritas can 

easily find whether the specified transaction 

is committed or aborted.  

Set updates the value of a specified key. The 

value is linked to the transaction unique 

identifier, which is recorded on the ledger. 

Get retrieves the value of a specified key. In 

our implementation of Veritas, we guarantee 

that the user reads the latest committed 

value of the key. Verify traces the proof path 

of the specified key in the Merkle Tree. 

Users can verify the correctness of the value 

by calculating the root digest of the proof 

path, and then compare the result with the 

expected root digest.  

3.1.3 Implementation Details. We 

implemented Veritas (Kafka) in 804 lines of 

Go code, using Redis [10] (v6.2.1) as the 

underlying database for shared tables. Redis 

is an in-memory key-value store that 

exhibits very high throughput, of up to 

100,000 operations per second [4]. To store 

the ledger, we use BadgerDB [17] which is 
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a database engine based on LSM trees and 

optimized for SSD.  

BadgerDB stores the keys and values 

separately to reduce the IO cost. Moreover, 

it stores pointers to the values in the LSM 

tree to save the compaction cost.  

In the original design of Veritas [22], the 

ledger is stored using a Merkle Tree [29]. 

While it is easy to verify that something is 

part of a Merkle Tree, it takes more effort to 

prove that something is not in the tree. For 

this reason, we adopt a Sparse Merkle Tree 

[15] in our implementation. This kind of 

tree contains a leaf for every possible result 

of a cryptographic hash function, making it 

easy to show that certain data is not part of 

the tree. On the other hand, a Sparse Merkle 

Tree needs more storage space compared to 

a Merkle Tree.  

The timestamp service implementation is 

based on Timestamp Oracle (TSO) [32] 

which ensures that the clock assigned to an  

event will not repeat. In Veritas, this 

timestamp service ensures that a unique and 

monotonically increasing timestamp is 

applied 

 
to each transaction. Other systems, such as 

TiDB [25, 33], also use Timestamp Oracle. 

In our implementation, the TSO is crash 

fault-tolerant by using a persisted write-

ahead log. The broadcasting service is based 

on Apache Kafka [20] (v2.7.0), which is a 

distributed messaging system that provides 

high through put. Kafka ensures crash fault 

tolerance (CFT) by persisting the messages 

to the disk and replicating them across 

nodes.  

3.1.4 Complexity Analysis. Next, we analyze 

the complexity of Veritas (Kafka) in terms 

of the number of messages the nodes need 

to exchange per block of updates. We 

suppose there are 𝑁 Veritas server nodes, 𝐾 

Kafka nodes, and the replication factor of 

Kafka is 𝑅. In practice, this replication 

factor is set to three [1]. In Veritas (Kafka), 

a node sends a block of updates to the Kafka 

service. Besides replicating it on 𝑅 replicas, 

the Kafka service sends the block to 𝑁 −1 

Veritas nodes. Each node checks and 

applies the updates, after which it sends an 

acknowledgement to Kafka. Then, Kafka 

sends each of the 𝑁 − 1 acknowledgements 

to the other 𝑁 − 1 nodes, resulting in a 

message complexity of (𝑁 2 ) for Veritas 

(Kafka).  

This result is backed by experimental 

evaluation in Section 4.3. In terms of 

storage complexity, we note that each block 

is persisted in the Sparse Merkle Tree of 

each Veritas node, and also on 𝑅 Kafka 

nodes. Hence, the storage complexity is (𝑁 

+ 𝑅).  

3.2 Veritas (TM)  

3.2.1 Overview. In general, blockchains 

operate in a Byzantine environment [18, 35]. 

Hence, using a CFT broadcasting service or  

consensus protocol, such as Apache Kafka 

or Raft, is unsuitable. That is why we 

implement Veritas with Tendermint [8], a 

BFT consensus protocol used by other 

systems, such as BigchainDB [42] and 

FalconDB [46]. Tendermint is a BFT 

middleware that supports a state transition 

machine. Similar to other BFT systems, 

Tendermint supports up to 1/3 malicious 

nodes in the network. Figure 4 depicts the 

architecture of Veritas (TM). We use 

Tendermint Core as the consensus and 

broadcasting service and an Application 

BlockChain Interface (ABCI) application 

integrated with the Veritas node to interact 

with Tendermint. A Get request is served 

directly by the Veritas node. In contrast, a 

Set transaction is sent to Tendermint via 

ABCI. When the transaction is included in a  

block and delivered back to the Veritas node 

via ABCI, it is applied to the local (Redis) 

database. This mechanism ensures a serial 

con currency control in Veritas (TM). 

Different from Veritas (Kafka), we   do not 

use a timestamp oracle (TSO) service in 

Veritas (TM). Such a TSO service is 

centralized in nature, thus, incompatible 

with a BFT setting.  

3.2.2 Implementation Details. Veritas (TM) 

is implemented in 517 lines of Go code, 

with Tendermint [8] (v0.35.0) as its 

consensus service, which is to be consistent 

with BigchainDB. The ledger module, 

verifiable data structure, concurrency 
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control, and local database are the same as 

for Veritas (Kafka). That is, we use a Sparse  

Merkle Tree as the verifiable data structure 

and Redis (v6.2.1) as local database.  

3.2.3 Complexity Analysis. The message 

complexity of Veritas (TM) is determined 

by the complexity of Tendermint, which is  

shown to be 𝑂(𝑁 3 ) by a recent study [7], 

where 𝑁 is the number of nodes in the 

system. We shall see in Section 4.3 that the 

performance  of Veritas (TM) decreases 

drastically with the number of nodes. We  

attribute this to the message complexity of 

Tendermint. The storage  complexity of 

Veritas (TM) is 𝑂(𝑁) since each block is 

stored on  all 𝑁 nodes.  

3.3 BlockchainDB  

3.3.1 Overview. As shown in Figure 3, a 

BlockchainDB [30] node is mainly 

composed of a storage layer and a database 

layer. The storage layer uses an off-the-shelf 

blockchain as a shared data base which 

provides tamper-proof and de-centralized 

storage. A  blockchain connector component, 

which is implemented for differ ent 

blockchain clients, handles the interactions 

with the blockchain  network. The database 

layer is built on top of the storage layer with  

a simple read/write interface to access data 

from a shared table. The  database layer in 

BlockchainDB is responsible for handling 

the Set  and Get requests from clients. 

Different from all the other systems  under 

test, BlockchainDB supports sharding. A 

sharding manager  component defines a 

partition scheme based on a hash algorithm  

and stores the connection information for 

each shard.  

3.3.2 User API. As shown in Table 3, 

BlockchainDB [30] supports three 

operations, namely, Set, Get, and Verify. 

The Set method writes  a key-value pair to 

the given shared table and returns a 

correspond ing blockchain transaction id. 

The Get method retrieves the data  

corresponding to a key from the given 

shared table. The Verify  method allows 

users to check the status of the given 

transaction id to verify if the operation was 

successfully committed.  

3.3.3 Implementation Details. In this paper, 

BlockchainDB is implemented in Go, where 

each node runs an RPC server serving 

clients requests. We use a private Ethereum 

(geth/v1.8.23-stable) blockchain with Proof-

of-Authority (PoA) consensus as the storage  

for experiments. A KVStore contract as 

defined in [30] is installed on the Ethereum 

network.  

3.3.4 Complexity Analysis. BlockchainDB is 

a sharded system, hence, we analyze the 

communication and storage overhead for a 

single shard. The total overhead is the sum 

of the overheads of each shard. Given the 

Ethereum backend used by BlockchainDB, 

the communication complexity is (𝑁), 

where 𝑁 is the number of nodes in a shard. 

This is due to the block broadcasting phase  

in Ethereum. The storage complexity is (𝑁) 

since the ledger is stored by each node.  

 

 

 
 

 

3.4 BigchainDB  

3.4.1 Overview. As shown in Figure 2, a 

BigchainDB node consists of three key 

components, namely, the server, consensus 

component (Tendermint), and local database 

(MongoDB). BigchainDB Server provides 

an HTTP service that handles user requests. 

This service uses the Flask [23] web 

application framework working with Web 

Server Gateway Interface (WSGI) of 

Gunicorn [11] to expose an HTTP API. 

Tendermint Consensus Component 
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provides a broadcasting service for the 

transaction blocks. It has the role of a bridge 

among BigchainDB nodes and it is 

responsible for proposing new transaction 

blocks and ensuring that all nodes agree on 

a block in a Byzantine fault-tolerant manner. 

After validating a transaction block, the 

Tendermint component sends a commit 

message to the local BigchainDB server to 

signal the commit of the transactions. 

MongoDB Database Component persists 

the data which can only be modified by the 

local BigchainDB server.  

The exposed API of the MongoDB 

component is determined by the local 

BigchainDB server. Different MongoDB 

instances may provide different functions.  

BigchainDB uses a concept called 

blockchain pipelining, which improves 

scalability when voting for the next blocks. 

In a blockchain, the transaction blocks are 

ordered which means that nodes cannot vote 

for a new block while the current block is 

undecided. This is because the new block 

needs to have a reference to a decided block. 

In BigchainDB, the blocks are also ordered, 

but server nodes are allowed to vote for a 

new block even if the current block is 

undecided. Using a voting list created at the 

same time with a block, expected voters are 

tracked while the list contains a refer ence to 

the current unsettled block. However, when 

voting for a block with an undecided parent 

block, a node has to verify that the block 

does not contain transactions with 

dependencies in the undecided block. This 

is a form of concurrency control adopted by 

BigchainDB [42]. We shall see in the next 

section that the validation process in 

BigchainDB slows down the entire system.  

The transaction flow in BigchainDB can be 

described as follows. When a BigchainDB 

server receives an HTTP request with a 

trans action, it first performs some checks to 

validate the transaction.  

That is, the node checks if this is not a 

duplicate transaction in both the transaction 

queue and the ledger. It also checks the 

inputs and outputs of the transaction. Next, 

it calls the Broadcast API provided by the 

local Tendermint component for the 

broadcasting of transactions. After receiving 

the commit message of the transaction from  

the Tendermint component, the server 

updates the state of the local MongoDB 

instance.  

3.4.2 User API. As shown in Table 4, 

BigchainDB supports three operations: 

query, create, and transfer. Query retrieves 

the details of a transaction based on its 

transaction id. If the transaction has been 

committed, a BigchainDB server returns the 

details of the transaction. Otherwise, a 404 

error code is returned. Create has the role to  

create assets for the specified user and to 

store them in BigchainDB. A Create 

transaction supports three modes, namely, 

async, sync, and commit. The default mode 

is async where a BigchanDB server 

responds before the Tendermint component 

validates the transaction. In sync mode, a 

BigchainDB server responds after the 

transaction block has been committed and 

the state in the MongoDB instance has been 

modified. Lastly, in commit mode, a 

BigchainDB server responds after checking 

the validation process of the block 

containing the transaction. Finally, Transfer 

has the role to transfer assets from one user 

to another. It also provides the same three 

modes for transaction processing as the 

Create API.  

3.4.3 Implementation Details. In this paper, 

we use the open-source BigchainDB [42] 

(v2.2.2) with MongoDB [3] (v4.4.4) and 

Tendermint [8] (0.31.5). In addition to the 

standard system, we also evaluate 

BigchainDB with Parallel Validation feature  

IV. PERFORMANCE ANALYSIS  

In this section, we analyze the performance 

of the five systems described in the previous 

section, namely, Veritas (Kafka), Veritas 

(TM), BigchainDB, BigchainDB (PV), and 

BlockchainDB. Next, we describe the 

experimental setup.  

4.1 Setup  

All the experiments are executed on a local 

machine under Ubuntu 18.04 operating 

system (OS). The machine has 256 physical 

CPU cores, 8 TB of RAM, and 3TB of hard-

disk (HDD) storage. Using iostat tool, the 

IOPS of the machine is estimated at 5.35. 

All the server and client nodes of the 

systems under test are running on this 

machine in Docker containers on different 

CPU cores.  

To evaluate the performance of the five 

systems under test, we send 100,000 
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transactions to each system. We send 

multiple transactions in parallel to a system, 

based on a concurrency parameter that 

represents the number of clients. The 

transactions are evenly distributed to 

different server nodes in the system. To 

compute the throughput, we record the start 

time of the first transaction and the 

completion time of all the transactions. 

Then, we record the number of successfully 

committed transactions and compute the 

throughput by dividing this number by the 

previously recorded time interval. Note that 

we only consider successful transactions 

when computing the throughput, but there 

may be failures as well.  

We repeat each experiment three times and 

report the average. Before executing the 

transactions, we load 100,000 key-value 

records of 1,000 bytes each into each system.  

We use the Yahoo! Cloud Serving 

Benchmark [13] (YCSB) dataset which is 

widely used to benchmark databases and 

blockchains [19, 35]. YCSB supports 

common database operations such as write 

(insert, modify, and delete), and read. While 

YCSB defines six workloads, in our 

experiments, we choose three of these six 

workloads. These three workloads are (i) 

Workload A which consists of 50% update 

operations and 50% read operations, (ii) 

Workload B which consists of 5% update 

operations and 95% read operations, and (ii)  

Workload C which consists of 100% read 

operations. Moreover, we  use three key 

distributions, namely, (i) uniform 

distribution which operates uniformly on all 

the keys, (ii) zipfian distribution which 

operates frequently only on a sub-set of the 

keys, and (iii) latest distribution which 

operates on the latest used keys. We use 

Workload A and uniform distribution by 

default, unless otherwise specified.  

The benchmarking tools are implemented 

by us in Go using goroutines [14] and a 

channel [14] as a concurrent safe request 

queue. A channel allows goroutines to 

synchronize without explicit locks or 

condition variables. Each benchmarking 

client is represented by a goroutine and it 

gets a new request from the channel once it  

completes the current request.  

4.2 Effect of Number of Clients  

We first analyze the effect of increasing the 

number of client nodes to determine the 

saturation points of the systems. In this 

experiment, we set the number of server 

nodes in each system to four. This number 

is derived based on the fact that BFT 

systems supporting up to 𝑓 faulty nodes 

need to have a total of at least 3𝑓 +1 nodes. 

Hence, for tolerating one faulty node, we 

need four nodes in the system.  

For consistency, we also set the number of 

Veritas (Kafka) server nodes to four. We 

use YCSB Workload A with uniform 

distribution and set the block size of the 

ledger to 100 transactions. We then increase 

the number of clients from 4 to 256.  

Figures 5a and 5b show the effect of 

increasing the number of clients on 

throughput and latency, respectively. We 

observe that the throughput of the BFT 

systems plateaus after using a certain 

number of clients, while for Veritas (Kafka) 

it is growing even if at a slow pace. These 

results are partially correlated with the 

latency:  

we observe a sharper increase in the latency 

of the BFT systems when using more than 

32 clients. Compared to BigchainDB, the 

throughput of Veritas (TM) becomes much 

higher starting from 32 clients. Even if both 

Veritas (TM) and BigchainDB use 

Tendermint as the underlying consensus 

protocol, their performance is very different. 

Veritas (TM) achieves its top performance 

of 1,742 TPS with 256 clients, while 

BigchainDB only achieves 175 TPS and this 

when using four clients. Increasing the 

number of clients in BigchainDB results in a 

sharp increase in latency while the 

throughput remains relatively constant.  

To investigate the reasons for BigchainDB’s 

low performance, we analyze the time spent 

in each major component of a hybrid 

blockchain database system. As presented in 

Section 2, each node of such a hybrid 

system has an underlying shared database, a 

ledger data structure and storage, and a 

consensus or broadcasting component. As 

shown in Figure 6, Veritas (Kafka), Veritas 

(TM), and BlockchainDB spend 45%, 55%, 

and 99% of their time in the con 

sensus component. On the other hand, 

BigchainDB spends 38% of its time 

validating transactions, as part of the ledger 

component. For example, BigchainDB 

checks for duplicate transactions both in the 

transaction queue (in memory) and in the 
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database (in MongoDB, on disk). This 

operation is very costly and implies 

sequential processing. That is why the 

latency increases significantly when more 

transactions are sent to the system at the 

same time (when increasing the number of 

clients). In BigchainDB (PV), transactions 

are checked in parallel but the overhead of 

parallel processing is around 11%. This, 

together with other ledger operations lead to 

33% of the time spent in the ledger 

component. The database part in 

 
 

 

 
 

 
 

BigchainDB (PV) is much lower compared 

to BigchainDB due to the bulk storage of 

transactions. However, the consensus 

accounts for 58.5% in BigchainDB (PV) 

compared to 35% in BigchainDB. We 

attribute this to the larger consensus 

message size in BigchainDB (PV) compared 

to BigchainDB.  

Secondly, we observe that the performance 

of Veritas (Kafka) is more than 10× higher 

compared to the BFT systems. In particular,  

Veritas (Kafka) exhibits a maximum of 

27,335 transactions per second (TPS) when 

256 clients are used, while Veritas (TM) 

achieves 1,742 TPS with 256 clients. 

BigchainDB and BigchainDB (PV) exhibit a 

maximum of 175 and 174 TPS, respectively, 

when using four clients. On the other hand, 

BlockchainDB achieves only 30 TPS, but 

this is expected due to the use of Ethereum 

as the underlying data storage. Even when 

using the PoA consensus, the throughput of 

Ethereum is below 100 TPS [19]. In terms 

of average latency, the corresponding values 
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are 74, 1139, 400, 23, and 23 milliseconds 

(ms) for Veritas (Kafka) with 256 clients, 

Veritas (TM) with 256 clients, 

BlockchainDB with 256 clients, 

BigchainDB and BigchainDB (PV) with 

four clients, respectively.  

Thirdly, we observe that the throughput of 

Veritas (TM) is 10× higher compared to 

BigchainDB. As shown in Table 5, the 

difference between these two systems is at 

storage and concurrency control layers. At 

the storage layer, Veritas (TM) is using 

Redis, while BigchainDB is using 

MongoDB. Redis has a higher through put 

than MongoDB, being an in-memory 

database. However, the throughputs of 

Veritas (TM) and BigchainDB are far lower 

than what Redis and MongoDB can support. 

To investigate if MongoDB has a significant 

negative impact on the performance, we 

replace Redis with MongoDB in Veritas 

(TM) and run the benchmarking again. The 

performance of Veritas (TM) with 

MongoDB is up to 22% lower compared to 

using Redis. In conclusion, the huge 

difference between Veritas (TM) and 

BigchainDB is due to the design and 

implementation of the latter, especially the 

complex and redundant transaction 

validation mechanism.  

4.3 Effect of Number of Server Nodes  

Next, we analyze the effect of increasing the 

number of server nodes on throughput and 

latency. We start from four nodes, the 

minimum number of nodes in a BFT system 

to support one faulty node, and increase the 

number of nodes up to 64. A network of 64 

nodes can support 21 faulty nodes in a BFT 

system. Similar to the previous experiment, 

we use YCSB Workload A with uniform 

distribution and a block size of 100 

transactions. We set the number of clients to 

256 for Veritas (Kafka), Veritas (TM), and 

BlockchainDB, and to four for BigchainDB 

and BigchainDB (PV).  

As shown in Figure 7, we observe the same 

gap in performance among Veritas (Kafka) 

and the BFT systems. Note that the latency 

of BlockchainDB only includes the time it 

takes for a request to be included in the 

transaction pool of Ethereum. It does not 

include the block confirmation time. The 

throughput of Veritas (TM) drops  

 

 

 
 

from 1,722 TPS on four nodes to 292 TPS 

on 32 nodes. On 64 nodes, Tendermint 

(v0.35.0) stops working due to 

synchronization errors among the peers. 

Again, this trend can be explained by the 

high message complexity of Tendermint, 

namely, (𝑁 3 ), where 𝑁 is the number of 

nodes. In BigchainDB and BigchainDB 

(PV), the impact of Tendermint is amortized 

because the system is slow in sending new 

transactions to the consensus component. As 
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explained before, BigchainDB and 

BigchainDB (PV) perform complex and 

redundant transaction validations which 

slow down the entire system.  

In Veritas (Kafka), the throughput increases 

with the number of server nodes, from 

25,009 TPS on four nodes to 41,262 TPS on 

32 nodes. On 64 nodes, the throughput 

decreases to 38,283 TPS. We attribute this 

to the interplay between the number of 

server nodes and the Kafka broadcasting 

service. With four server nodes, there are 

not enough transactions exchanges to 

saturate Kafka which supports up to 

200,000 messages per second. Also, there 

are too few server nodes to process the 

transactions as opposed to 32 nodes that can 

process more transactions. But when we 

increase the number of nodes beyond 32, 

Kafka starts to become a bottleneck. For 

example, with 64 nodes, there are close to 

100,000 writes and 6,200,000 reads in the 

Kafka service.  

In Figure 8, we plot the number of read and 

write operations in Kafka as the number of 

server nodes in Veritas (Kafka) grows, 

using a logarithmic scale. The number of 

write operations grows linearly with the 

number of server nodes because, for each 

transaction sent by a node, the other 𝑁 − 1 

nodes need to write (send) an 

acknowledgment to Kafka. On the other 

hand, the number of read operations grows 

quadratically with the number of server 

nodes. This is because each of those 𝑁 − 1 

acknowledgments are read by all the other 

𝑁 − 1 nodes in the system. This results in a 

message complexity of (𝑁 2 ) in Veritas 

(Kafka), where 𝑁 is the number of server 

nodes.  

4.4 Effect of Access Distributions  

In this section, we evaluate the performance 

of the five systems with different access 

distributions, namely uniform, latest, and 

zipfian with a coefficient of 0.5. As shown 

in Figure 9, we do not observe significant 

differences among these distributions. This 

can be explained by the fact that there is no 

significant number of aborted transactions 

in the evaluated systems. For example, 

Veritas (TM) and BlockchainDB exhibit no 

aborted transactions due to the serial 

transaction commit. Even in Veritas (Kafka) 

with MVCC, there are up to 20 aborted 

transactions out of 100,000 total 

transactions, when using the zipfian 

distribution. We attribute this low number 

of conflicts to the fact that the version 

control is based on the centralized global 

timestamp service. This, combined with a 

fast Kafka delivery service, make conflicts 

unlikely.  

In Veritas (Kafka), serialization is 

guaranteed by the broadcasting service. 

Server nodes send both new blocks and 

approvals of blocks concurrently, with no 

blocking. When a server node receives a 

new block, it first checks the conflicts 

between the transactions in that block and 

the current state of the underlying database. 

If there is no conflict, it sends an approval 

message with its signature via Kafka and 

buffers this block in memory. If there are 

conflicts, the server node sends an abort 

message via Kafka. The block is finally 

committed once the server node receives all 

the approval messages from the other server 

nodes. Hence, conflict checking and new 

block generation happen in parallel in 

Veritas (Kafka). But this leads to more 

conflicts and these conflicts are detecting 

during the checking phase.   

 

4.5 Effect of YCSB Workloads  

Next, we evaluate the performance of the 

five systems with three different YCSB 

workloads, namely, Workload A, Workload 

B, and Workload C. The number of 

transactions in each block of the shared log 

is 100, the number of server nodes is set to 

four, and the number of clients in each 

system are those that exhibit the best 

performance. As expected, all the systems 

exhibit higher performance when the 

number of read operations is higher. Recall 

that the proportion of read operations is 

50%, 95%, and 100% in Workloads A, B, 

and C, respectively. As shown in Figure 10, 

the gap between Veritas (Kafka) and Veritas 

(TM) becomes smaller as the number of 

read (or Get) operations is higher. For 

example, Veritas (TM) achieves higher 

throughput with Workload C compared to 

Veritas (Kafka). This is because Get 

operations are served immediately by 

Veritas (TM), while Veritas (Kafka) needs 

to apply the MVCC mechanism that 

introduces a delay. For the same reason of 

serving Get operations immediately, 

BlockchainDB achieves an impressing 
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throughput of 13,124 TPS with Workload C, 

compared to just 30 TPS with Workload A. 

On the other hand, BigchainDB achieves 

only 257 TPS with Workload C. We 

attribute this to the complex asset query in  

MongoDB used by BigchainDB to serve a 

Get operation.  

 

 

 
V. DISCUSSION  

In this section, we discuss some trade-offs 

that users and developers need to consider 

when using and designing a hybrid 

blockchain database system. We look at 

these trade-offs from the perspective of 

performance, security, and ease of 

development.  

CFT vs. BFT. Adopting a CFT or BFT 

consensus protocol depends on the 

environment where the system is supposed 

to operate. Nonetheless, it is well-known 

that BFT consensus is much slower than 

CFT consensus [16, 35]. In this paper, we 

show that the gap between the CFT and 

BFT systems throughput is 5 − 500×. We 

also show that the performance of both CFT 

and BFT systems degrades under poor real-

world networking conditions. While typical  

blockchains employ BFT consensus 

protocols due to their security guarantees in 

a Byzantine environment, some 

permissioned blockchains such as 

Hyperledger Fabric [21] and R3 Corda [24] 

are employing CFT consensus protocols, 

while delegating the security aspects to the 

blockchain access/membership layer. When 

choosing BFT, the main focus of a 

developer is on optimizing the performance 

since the security guarantees are relatively 

high. Query optimization and using high-

performance underlying storage are the 

common methods of optimizing such 

systems. Optimizing the performance of the 

BFT consensus is an important aspect that is 

studied in recent works [8, 28, 45]. In 

contrast, CFT protocols usually provide 

high performance and developers need to 

add verifiable components to provide 

security guarantees such as building an 

append-only ledger to provide verifiability.  

In summary, CFT hybrid blocAkchain 

database systems should be used when there 

is a demand for high performance without 

strict security guarantees, such as in online 

transaction processing (OLTP) systems. 

When starting with an existing CFT system, 

the developer can add blockchain features, 

such as an append-only ledger, to improve 

security. BFT hybrid blockchain database 

systems should be used when there is a need 

for high security, such as for digital assets 

storage. When starting with an existing BFT 

system, the developer can add database 

features, such as parallel validation and 

query optimization, to improve the 

performance.  

VI. CONCLUSIONS 
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In this article, we examine the hybrid 

blockchain database solutions that have 

been put out by the database community in 

recent years. 

Next, using Veritas as a basis, we do an 

extensive performance study of five hybrid 

blockchain database system 

implementations [22],  

BigchainDB [42], and BlockchainDB [30]. 

We may alter the system's essential 

elements, such the underlying database and 

consensus middleware, to examine how they 

affect performance thanks to our adaptable 

Veritas implementation. For instance, we 

find that performance decreases by more 

than 15× when we switch out the CFT 

Apache Kafka middleware with the BFT 

Tendermint middleware.  

Nonetheless, Tendermint provides security 

assurances inside a Byzantine setting. 

However, we find that there are only minor 

performance changes when we use 

RediSQL and MongoDB in lieu of the 

underlying Redis database. This indicates 

that the consensus procedures are the cause 

of the systems' subpar performance, along 

with a breakdown of the time spent in each 

key component of a hybrid blockchain 

database system.  
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