

355

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

Intelligent Malware Detection for Industrial IoT Systems: A Proactive

Approach using Deep Nueral Networks

P. Swapna1*, Velpuri Gopi1, Varkala Vinay Kumar1, Megavath Praveen Kumar1, Adakuntla Shivamani1

1Department of CSE (AI & ML), Sree Dattha Institute of Engineering and Science, Sheriguda,

Hyderabad, Telangana, India

Corresponding E-mail: poreddyswapna1@sreedattha.ac.in

Abstract

Industrial IoT (IIoT) system security becomes crucial as enterprises use IoT technologies to improve

efficiency, productivity, and automation. IoT devices in industrial environments create additional attack

surfaces and weaknesses, making them ideal targets for unscrupulous actors. IIoT malware assaults can

interrupt production, breach data, and harm physical infrastructure. Predicting and combating IIoT

malware threats is difficult. Signature-based malware detection is used in traditional IIoT security

systems to identify and stop threats. Detecting new malware strains is limited by this method. Signature-

based solutions may also struggle in complicated IIoT contexts due to their static nature. IIoT's real-

time operation needs and resource limits make security implementation difficult without affecting

system performance. This project creates a cutting-edge IIoT malware prediction system. The proposed

model's proactive and adaptive security is important. The technology uses advanced machine learning

and classification to scan device and network traffic in real time and discover malware anomalies. This

proactive strategy detects and mitigates risks early, avoiding industrial disruptions and protecting

critical data.

Keywords: Internet of Things, Industrial IoT, Malware prediction, Proactive security, Deep learning.

1. Introduction

The adoption of Internet of Things (IoT) technologies in industries, known as Industrial IoT (IIoT), has

become increasingly prevalent as organizations seek to improve efficiency, productivity, and

automation. IIoT involves the integration of sensors, devices, and networks into industrial processes,

enabling real-time data collection, analysis, and control. This transformative technology has the

potential to revolutionize various sectors, including manufacturing, energy, healthcare, and

transportation. The concept of IoT dates back to the early 2000s when Kevin Ashton, a British

technologist, coined the term "Internet of Things" to describe the connectivity between physical objects

and the internet. However, the practical implementation of IoT gained momentum in the following years

with advancements in wireless communication, sensor technologies, and cloud computing. In India, the

adoption of IoT in industrial settings has been influenced by global trends and the country's push

towards digitalization and Industry 4.0 initiatives.

India's industrial sector is a significant contributor to the country's economy, accounting for a substantial

share of GDP and employment. According to the India Brand Equity Foundation (IBEF), the

manufacturing sector alone contributes around 16-17% to India's GDP and employs over 12% of the

country's workforce. With the government's focus on initiatives such as "Make in India" and "Digital

India," there has been a growing emphasis on leveraging IoT and IIoT technologies to enhance industrial

competitiveness and drive economic growth. Furthermore, the Indian IoT market is witnessing robust

growth, fuelled by factors such as increasing internet penetration, advancements in technology, and

government initiatives to promote digitalization. According to a report by NASSCOM, the IoT market

in India is expected to reach $15 billion by 2025, with the industrial sector being a significant

mailto:poreddyswapna1@sreedattha.ac.in

356

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

contributor to this growth. Additionally, industries such as manufacturing, energy, and logistics are

increasingly adopting IIoT solutions to improve operational efficiency, optimize resource utilization,

and enable predictive maintenance. However, along with the opportunities, IIoT adoption in India also

poses challenges related to cybersecurity and data privacy. As IIoT systems become more

interconnected and data-driven, there is a growing need for robust security measures to protect against

cyber threats and ensure the integrity and confidentiality of sensitive information.

Given the significance of IIoT in India's industrial landscape, there is a pressing need to address security

concerns and develop advanced malware prediction systems tailored to the country's specific

requirements. By leveraging machine learning and real-time analysis techniques, Indian industries can

enhance their cybersecurity posture and mitigate the risks associated with IIoT deployments.

Additionally, collaborative efforts between government agencies, industry stakeholders, and

cybersecurity experts are essential to promote awareness, build resilience, and foster a secure and

sustainable IIoT ecosystem in India.

2. Literature Survey

Mohaisen et al. [1] proposed an automated and behavior-based malware analysis and labeling (AMAL)

system to automatically analyze and classify malware behaviors. AMAL largely consists of AutoMal,

which monitors behaviors of the file system, network, and registry, and MaLabel, which classifies

similar malware by family based on the monitoring of extracted behaviors. MaLabel classifies specific

malware families using the machine learning techniques support vector machine (SVM), decision tree

(DT), and K-nearest neighbor (KNN) algorithms. However, the AMAL proposed by Mohaisen [1] has

the difficulty of manually verifying by the malware analyst in the process of selecting and labeling the

representative behavior of the malware.

Galal et al. [2] proposed a behavior analysis method of malware that collects information from

application programming interface (API) calls and parameters used by malware through an API hooking

technique. It infers unique malware behaviors in the API sequence generated from the extracted API

calls and parameters. Although machine learning techniques such as DT, random forest (RF), and SVM

algorithms were used to classify malware based on the inferred behaviors, the method had difficulty

detecting malware, because the inference of malware behaviors involved the subjective intervention of

analyzers.

Phode et al. [3] proposed a model to predict malware in execution files by setting the file execution

time to a sec unit. The behavior data used to classify and detect malware were continuous data such as

the total number of processes, the maximum number of allocated process IDs, or memory usage; which

were trained by a recurrent neural network (RNN) to determine the presence of malware before the

malware executed the payload, thereby protecting the system from malicious attacks.

Shaid et al. [4] proposed a malware behavior image technique that visualizes malware by mapping a

color according to the malware intensity of API calls after capturing the calls from behavior data to

emphasize the malicious acts of the variant malware. When the malware intensity of API calls is higher,

warmer colors are used; cooler colors represent a lower malware intensity of calls.

Trinius et al. [5] proposed a treemaps and thread graphs to image malware behaviors to summarize and

represent a large number of behavior record reports extracted from CWSandbox. The treemaps extract

data about the frequency of API calls and operations performed by malware, conducting the

visualization. By contrast, the thread graph converts the behavior data, where individual thread

operations of processes are sequentially listed by time into images.

357

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

Han et al. [6] proposed a method to create images based on the opcode sequence extracted from the

execution results of static and dynamic analyses on binary files. The method can measure the similarity

between variant malware by comparing the RGB pixel information between the images generated from

the binary files.

Cui [7] proposed a method to quickly detect variant malicious code by visualizing the malware through

image processing technology. First, after converting the binary file for malware into a gray scale image,

CNN was used to automatically extract the features of the generated image. In addition, a data

equalization method was applied to the malware image by applying the bat algorithm to solve the

overfitting problem caused by the number of different malware families. This malware detection

method showed an excellent detection speed, and the accuracy was 94.5%.

The DAIMD proposed in this paper analyzes the overall functions of malware through dynamic analysis

to detect well-known IoT malware as well as new and variant IoT malware and compresses and

represents feature data by visualizing a large amount of this data. It selects representative features in

images through a CNN model and trains them to analyze and detect malware, thereby avoiding the need

for the subjective intervention of malware analyzers.

4. Proposed Methodology

The Malware Prediction GUI system is designed to provide an innovative and intelligent solution for

predicting malware in Industrial IoT systems. It integrates various machine learning models, data

preprocessing techniques, and visualization tools to offer users a comprehensive platform for malware

detection and analysis as shown in Figure 1.

Dataset Upload and Visualization:

• The system starts by allowing users to upload their datasets through a user-friendly interface.

This dataset serves as the foundation for training and testing machine learning models.

• Upon upload, the dataset is displayed within the GUI, offering users transparency and ensuring

they are working with the correct data.

• A count plot of class categories is presented, providing insights into the distribution of different

classes within the dataset. This visualization aids users in understanding the balance or

imbalance among classes, which is crucial for effective model training.

Data Preprocessing and Model Training:

• The uploaded dataset undergoes preprocessing to clean and prepare it for model training. This

includes handling missing values, encoding categorical variables, and splitting the dataset into

training and testing sets.

• Multiple machine learning models, including Decision Tree Classifier, Random Forest

Classifier, and Deep Neural Network (DNN), are trained using the preprocessed dataset. Each

model's performance metrics, such as accuracy, precision, recall, and F1-score, are computed

and displayed within the GUI.

• ROC curves are plotted for each trained model, illustrating the trade-off between true positive

rate and false positive rate. These curves provide users with valuable insights into the models'

performance and help them make informed decisions.

358

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

Model Comparison and Prediction:

• A comparison graph is generated to visualize the performance metrics across different models.

This graph allows users to easily compare the strengths and weaknesses of each model and

choose the most suitable one for their specific use case.

Finally, the system enables users to make predictions on test data using the trained models. The

predicted results are displayed within the GUI, enabling users to assess the models' performance in real-

world scenarios and take appropriate actions.

Figure 1: Proposed system architecture of malware prediction.

3.1 ANN Classifier

Although today the Perceptron is widely recognized as an algorithm, it was initially intended as an

image recognition machine. It gets its name from performing the human-like function of perception,

seeing, and recognizing images. Interest has been centered on the idea of a machine which would be

capable of conceptualizing inputs impinging directly from the physical environment of light, sound,

temperature, etc. — the “phenomenal world” with which we are all familiar — rather than requiring the

intervention of a human agent to digest and code the necessary information. Rosenblatt’s perceptron

machine relied on a basic unit of computation, the neuron. Just like in previous models, each neuron

has a cell that receives a series of pairs of inputs and weights. The major difference in Rosenblatt’s

model is that inputs are combined in a weighted sum and, if the weighted sum exceeds a predefined

threshold, the neuron fires and produces an output.

Figure 2: Perceptron neuron model (left) and threshold logic (right).

359

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

Threshold 𝑇 represents the activation function. If the weighted sum of the inputs is greater than zero

the neuron outputs the value 1, otherwise the output value is zero.

Perceptron for Binary Classification

With this discrete output, controlled by the activation function, the perceptron can be used as a binary

classification model, defining a linear decision boundary. It finds the separating hyperplane that

minimizes the distance between misclassified points and the decision boundary. The perceptron loss

function is defined as below:

To minimize this distance, perceptron uses stochastic gradient descent (SGD) as the optimization

function. If the data is linearly separable, it is guaranteed that SGD will converge in a finite number of

steps. The last piece that Perceptron needs is the activation function, the function that determines if the

neuron will fire or not. Initial Perceptron models used sigmoid function, and just by looking at its shape,

it makes a lot of sense! The sigmoid function maps any real input to a value that is either 0 or 1 and

encodes a non-linear function. The neuron can receive negative numbers as input, and it will still be

able to produce an output that is either 0 or 1. The reason why ReLU became more adopted is that it

allows better optimization using SGD, more efficient computation and is scale-invariant, meaning, its

characteristics are not affected by the scale of the input. The neuron receives inputs and picks an initial

set of weights random. These are combined in weighted sum and then ReLU, the activation function,

determines the value of the output.

Figure 3: Perceptron neuron model (left) and activation function (right).

Perceptron uses SGD to find, or you might say learn, the set of weight that minimizes the distance

between the misclassified points and the decision boundary. Once SGD converges, the dataset is

separated into two regions by a linear hyperplane. Although it was said the Perceptron could represent

any circuit and logic, the biggest criticism was that it couldn’t represent the XOR gate, exclusive OR,

where the gate only returns 1 if the inputs are different. This was proved almost a decade later and

highlights the fact that Perceptron, with only one neuron, can’t be applied to non-linear data.

4. Results and Discussion

Figure 4 displays the Receiver Operating Characteristic (ROC) curve of the Random Forest Classifier

(RFC) model. The ROC curve is a graphical representation of the true positive rate (sensitivity) against

the false positive rate (1-specificity) at various threshold settings. By plotting the ROC curve for the

RFC model, users can assess its performance across different threshold values. A model with superior

performance typically exhibits an ROC curve that is closer to the top-left corner of the plot, indicating

higher sensitivity and lower false positive rate. This visualization aids users in evaluating the RFC

model's discriminative ability and determining its suitability for malware prediction tasks.

360

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

Figure 4: ROC curve of RFC model.

Figure 5: ROC curve of DTC model.

Figure 5 showcases the ROC curve of the Decision Tree Classifier (DTC) model. Similar to Figure 4,

the ROC curve provides insights into the DTC model's performance in distinguishing between malware

and non-malware instances. By analyzing the ROC curve, users can assess the model's sensitivity and

specificity across different threshold settings. Comparing the ROC curves of different models, such as

RFC and DTC, enables users to make informed decisions regarding model selection and deployment in

real-world scenarios.

Figure 6 presents the ROC curve of the Deep Neural Network (DNN) model. As with Figures 4 and 5,

the ROC curve visualizes the DNN model's performance in classifying malware and non-malware

instances. By examining the ROC curve, users can evaluate the DNN model's ability to balance

sensitivity and specificity, ultimately determining its efficacy in detecting malware in Industrial IoT

systems. Comparing the ROC curves of various models aids users in selecting the most suitable model

based on their performance requirements and constraints.

361

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

Figure 6: ROC curve of DNN model.

Figure 7: Presents the all-model comparison graph of performance metrices.

Figure 7 illustrates a model comparison graph depicting the performance metrics of different machine

learning models. These metrics may include accuracy, precision, recall, and F1-score, among others.

By presenting the performance metrics in a graphical format, users can easily compare the strengths

and weaknesses of each model. This visualization facilitates data-driven decision-making by

highlighting the models that excel in specific performance criteria. Users can leverage the model

comparison graph to identify the most effective model for malware prediction tasks in Industrial IoT

systems.

Table 1 summarizes the performance metrics of three different machine learning models: Random

Forest (RF), Decision Tree, and Deep Neural Network (DNN).

• Random Forest (RF): The RF model shows high precision, recall, F1-score, and accuracy, all

above 99%. This indicates that the RF model performs exceptionally well in both precision and

recall, meaning it makes very few false positives and false negatives, and overall, it classifies

instances with high accuracy.

362

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

• Decision Tree: The Decision Tree model also demonstrates strong performance with precision,

recall, F1-score, and accuracy values ranging around 98%. However, these metrics are slightly

lower compared to the RF model, suggesting that the Decision Tree may not generalize as well

as RF, possibly due to overfitting or other limitations of the decision tree algorithm.

• Deep Neural Network (DNN): The DNN model exhibits performance metrics similar to the

Random Forest, with precision, recall, F1-score, and accuracy around 98%. This suggests that

the DNN model performs comparably to the Random Forest in terms of classification accuracy,

making it a viable alternative for the given task.

Table 1: Performance metrics in a tabular form

Model Precision Recall F1-Score Accuracy

Random Forest (RF) 91.2988 89.7350 90.4236 91.3535

Decision Tree 85.1450 86.37382 85.6555 86.5646

Deep Neural Network (DNN) 98.6733 98.4302 98.549 98.6697

5. Conclusion

In conclusion, the development of an innovative and intelligent malware prediction system for Industrial

IoT represents a significant step towards enhancing cybersecurity in industrial environments. By

leveraging advanced machine learning and classification techniques, the proposed system offers

proactive and adaptive security measures capable of preemptively detecting and mitigating malware

attacks. Looking ahead, the future scope of this research includes further refinement and optimization

of the malware prediction algorithms to improve detection accuracy and reduce false positives.

Additionally, integrating threat intelligence feeds and collaborative defense mechanisms can enhance

the system's capabilities in identifying and responding to emerging cyber threats. Furthermore,

exploring the potential integration of blockchain technology for securing IIoT communications and data

integrity presents an exciting avenue for future research. By leveraging blockchain's decentralized and

immutable nature, it may be possible to enhance the resilience and trustworthiness of IIoT systems

against malicious attacks.

REFERENCES

[1] H. Sun, X. Wang, R. Buyya and J. Su, "CloudEyes: Cloud-based malware detection with

reversible sketch for resource-constrained Internet of Things (IoT) devices", Softw. Pract.

Exper., vol. 47, pp. 421-441, Mar. 2017.

[2] M. Noor, H. Abbas and W. B. Shahid, "Countering cyber threats for industrial applications: An

automated approach for malware evasion detection and analysis", J. Netw. Comput. Appl., vol.

103, pp. 249-261, Feb. 2018.

[3] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail and M. M. Hassan, "Malware threats and

detection for industrial mobile-IoT networks", IEEE Access, vol. 6, pp. 15941-15957, 2018.

[4] O. A. Waraga, M. Bettayeb, Q. Nasir and M. A. Talib, "Design and implementation of automated

IoT security testbed", Comput. Secur., vol. 88, pp. 1-17, Jan. 2020.

[5] R. Kumar, X. Zhang, R. U. Khan and A. Sharif, "Research on data mining of permission-induced

risk for Android IoT devices", Appl. Sci., vol. 9, no. 2, pp. 1-22, Jan. 2019.

[6] P. K. Sharma, J. H. Park, Y.-S. Jeong and J. H. Park, "SHSec: SDN based secure smart home

network architecture for Internet of Things", Mobile Netw. Appl., vol. 24, no. 3, pp. 913-924,

Jun. 2019.

363

ResMilitaris,vol.14 n°,4 ISSN: 2265-6294 (2024)

[7] Y.-S. Jeong and J. H. Park, "IoT and smart city technology: Challenges opportunities and

solutions", J. Inf. Process. Syst., vol. 15, no. 2, pp. 233-238, Apr. 2019.

[8] T. Lei, Z. Qin, Z. Wang, Q. Li and D. Ye, "EveDroid: Event-aware Android malware detection

against model degrading for IoT devices", IEEE Internet Things J., vol. 6, no. 4, pp. 6668-6680,

Aug. 2019.

[9] K. Gafurov and T.-M. Chung, "Comprehensive survey on Internet of Things architecture

security aspects applications related technologies economic perspective and future directions",

J. Inf. Process. Syst., vol. 15, no. 4, pp. 797-819, Aug. 2019.

[10] S.-Y. Choi, C. G. Lim and Y.-M. Kim, "Automated link tracing for classification of malicious

Websites in malware distribution networks", J. Inf. Process. Syst., vol. 15, no. 1, pp. 100-115,

Feb. 2019.

[11] N. Y. Kim, S. Rathore, J. H. Ryu, J. H. Park and J. H. Park, "A survey on cyber physical system

security for IoT: Issues challenges threats solutions", J. Inf. Process. Syst., vol. 14, no. 6, pp.

1361-1384, Dec. 2018.

[12] A. Nieto and R. Rios, "Cybersecurity profiles based on human-centric IoT devices", Hum.-

Centric Comput. Inf. Sci., vol. 9, no. 1, pp. 1-23, Nov. 2019.

[13] T. A. Alghamdi, "Convolutional technique for enhancing security in wireless sensor networks

against malicious nodes", Hum.-Centric Comput. Inf. Sci., vol. 9, no. 1, pp. 1-10, Oct. 2019.

[14] P. K. Sharma, J. H. Ryu, K. Y. Park, J. H. Park and J. H. Park, "Li-Fi based on security cloud

framework for future IT environment", Hum.-Centric Comput. Inf. Sci., vol. 8, no. 1, pp. 1-13,

Aug. 2018.

