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Abstract 

Industrial IoT (IIoT) system security becomes crucial as enterprises use IoT technologies to improve 

efficiency, productivity, and automation. IoT devices in industrial environments create additional attack 

surfaces and weaknesses, making them ideal targets for unscrupulous actors. IIoT malware assaults can 

interrupt production, breach data, and harm physical infrastructure. Predicting and combating IIoT 

malware threats is difficult. Signature-based malware detection is used in traditional IIoT security 

systems to identify and stop threats. Detecting new malware strains is limited by this method. Signature-

based solutions may also struggle in complicated IIoT contexts due to their static nature. IIoT's real-

time operation needs and resource limits make security implementation difficult without affecting 

system performance. This project creates a cutting-edge IIoT malware prediction system. The proposed 

model's proactive and adaptive security is important. The technology uses advanced machine learning 

and classification to scan device and network traffic in real time and discover malware anomalies. This 

proactive strategy detects and mitigates risks early, avoiding industrial disruptions and protecting 

critical data. 
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1. Introduction 

The adoption of Internet of Things (IoT) technologies in industries, known as Industrial IoT (IIoT), has 

become increasingly prevalent as organizations seek to improve efficiency, productivity, and 

automation. IIoT involves the integration of sensors, devices, and networks into industrial processes, 

enabling real-time data collection, analysis, and control. This transformative technology has the 

potential to revolutionize various sectors, including manufacturing, energy, healthcare, and 

transportation. The concept of IoT dates back to the early 2000s when Kevin Ashton, a British 

technologist, coined the term "Internet of Things" to describe the connectivity between physical objects 

and the internet. However, the practical implementation of IoT gained momentum in the following years 

with advancements in wireless communication, sensor technologies, and cloud computing. In India, the 

adoption of IoT in industrial settings has been influenced by global trends and the country's push 

towards digitalization and Industry 4.0 initiatives. 

India's industrial sector is a significant contributor to the country's economy, accounting for a substantial 

share of GDP and employment. According to the India Brand Equity Foundation (IBEF), the 

manufacturing sector alone contributes around 16-17% to India's GDP and employs over 12% of the 

country's workforce. With the government's focus on initiatives such as "Make in India" and "Digital 

India," there has been a growing emphasis on leveraging IoT and IIoT technologies to enhance industrial 

competitiveness and drive economic growth. Furthermore, the Indian IoT market is witnessing robust 

growth, fuelled by factors such as increasing internet penetration, advancements in technology, and 

government initiatives to promote digitalization. According to a report by NASSCOM, the IoT market 

in India is expected to reach $15 billion by 2025, with the industrial sector being a significant 
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contributor to this growth. Additionally, industries such as manufacturing, energy, and logistics are 

increasingly adopting IIoT solutions to improve operational efficiency, optimize resource utilization, 

and enable predictive maintenance. However, along with the opportunities, IIoT adoption in India also 

poses challenges related to cybersecurity and data privacy. As IIoT systems become more 

interconnected and data-driven, there is a growing need for robust security measures to protect against 

cyber threats and ensure the integrity and confidentiality of sensitive information. 

Given the significance of IIoT in India's industrial landscape, there is a pressing need to address security 

concerns and develop advanced malware prediction systems tailored to the country's specific 

requirements. By leveraging machine learning and real-time analysis techniques, Indian industries can 

enhance their cybersecurity posture and mitigate the risks associated with IIoT deployments. 

Additionally, collaborative efforts between government agencies, industry stakeholders, and 

cybersecurity experts are essential to promote awareness, build resilience, and foster a secure and 

sustainable IIoT ecosystem in India. 

2. Literature Survey 

Mohaisen et al. [1] proposed an automated and behavior-based malware analysis and labeling (AMAL) 

system to automatically analyze and classify malware behaviors. AMAL largely consists of AutoMal, 

which monitors behaviors of the file system, network, and registry, and MaLabel, which classifies 

similar malware by family based on the monitoring of extracted behaviors. MaLabel classifies specific 

malware families using the machine learning techniques support vector machine (SVM), decision tree 

(DT), and K-nearest neighbor (KNN) algorithms. However, the AMAL proposed by Mohaisen [1] has 

the difficulty of manually verifying by the malware analyst in the process of selecting and labeling the 

representative behavior of the malware. 

Galal et al. [2] proposed a behavior analysis method of malware that collects information from 

application programming interface (API) calls and parameters used by malware through an API hooking 

technique. It infers unique malware behaviors in the API sequence generated from the extracted API 

calls and parameters. Although machine learning techniques such as DT, random forest (RF), and SVM 

algorithms were used to classify malware based on the inferred behaviors, the method had difficulty 

detecting malware, because the inference of malware behaviors involved the subjective intervention of 

analyzers. 

Phode et al. [3] proposed a model to predict malware in execution files by setting the file execution 

time to a sec unit. The behavior data used to classify and detect malware were continuous data such as 

the total number of processes, the maximum number of allocated process IDs, or memory usage; which 

were trained by a recurrent neural network (RNN) to determine the presence of malware before the 

malware executed the payload, thereby protecting the system from malicious attacks. 

Shaid et al. [4] proposed a malware behavior image technique that visualizes malware by mapping a 

color according to the malware intensity of API calls after capturing the calls from behavior data to 

emphasize the malicious acts of the variant malware. When the malware intensity of API calls is higher, 

warmer colors are used; cooler colors represent a lower malware intensity of calls. 

Trinius et al. [5] proposed a treemaps and thread graphs to image malware behaviors to summarize and 

represent a large number of behavior record reports extracted from CWSandbox. The treemaps extract 

data about the frequency of API calls and operations performed by malware, conducting the 

visualization. By contrast, the thread graph converts the behavior data, where individual thread 

operations of processes are sequentially listed by time into images. 
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Han et al. [6] proposed a method to create images based on the opcode sequence extracted from the 

execution results of static and dynamic analyses on binary files. The method can measure the similarity 

between variant malware by comparing the RGB pixel information between the images generated from 

the binary files. 

Cui [7] proposed a method to quickly detect variant malicious code by visualizing the malware through 

image processing technology. First, after converting the binary file for malware into a gray scale image, 

CNN was used to automatically extract the features of the generated image. In addition, a data 

equalization method was applied to the malware image by applying the bat algorithm to solve the 

overfitting problem caused by the number of different malware families. This malware detection 

method showed an excellent detection speed, and the accuracy was 94.5%. 

The DAIMD proposed in this paper analyzes the overall functions of malware through dynamic analysis 

to detect well-known IoT malware as well as new and variant IoT malware and compresses and 

represents feature data by visualizing a large amount of this data. It selects representative features in 

images through a CNN model and trains them to analyze and detect malware, thereby avoiding the need 

for the subjective intervention of malware analyzers. 

4. Proposed Methodology 

The Malware Prediction GUI system is designed to provide an innovative and intelligent solution for 

predicting malware in Industrial IoT systems. It integrates various machine learning models, data 

preprocessing techniques, and visualization tools to offer users a comprehensive platform for malware 

detection and analysis as shown in Figure 1. 

Dataset Upload and Visualization: 

• The system starts by allowing users to upload their datasets through a user-friendly interface. 

This dataset serves as the foundation for training and testing machine learning models. 

• Upon upload, the dataset is displayed within the GUI, offering users transparency and ensuring 

they are working with the correct data. 

• A count plot of class categories is presented, providing insights into the distribution of different 

classes within the dataset. This visualization aids users in understanding the balance or 

imbalance among classes, which is crucial for effective model training. 

Data Preprocessing and Model Training: 

• The uploaded dataset undergoes preprocessing to clean and prepare it for model training. This 

includes handling missing values, encoding categorical variables, and splitting the dataset into 

training and testing sets. 

• Multiple machine learning models, including Decision Tree Classifier, Random Forest 

Classifier, and Deep Neural Network (DNN), are trained using the preprocessed dataset. Each 

model's performance metrics, such as accuracy, precision, recall, and F1-score, are computed 

and displayed within the GUI. 

• ROC curves are plotted for each trained model, illustrating the trade-off between true positive 

rate and false positive rate. These curves provide users with valuable insights into the models' 

performance and help them make informed decisions. 
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Model Comparison and Prediction: 

• A comparison graph is generated to visualize the performance metrics across different models. 

This graph allows users to easily compare the strengths and weaknesses of each model and 

choose the most suitable one for their specific use case. 

Finally, the system enables users to make predictions on test data using the trained models. The 

predicted results are displayed within the GUI, enabling users to assess the models' performance in real-

world scenarios and take appropriate actions. 

 

Figure 1: Proposed system architecture of malware prediction. 

3.1 ANN Classifier 

Although today the Perceptron is widely recognized as an algorithm, it was initially intended as an 

image recognition machine. It gets its name from performing the human-like function of perception, 

seeing, and recognizing images. Interest has been centered on the idea of a machine which would be 

capable of conceptualizing inputs impinging directly from the physical environment of light, sound, 

temperature, etc. — the “phenomenal world” with which we are all familiar — rather than requiring the 

intervention of a human agent to digest and code the necessary information. Rosenblatt’s perceptron 

machine relied on a basic unit of computation, the neuron. Just like in previous models, each neuron 

has a cell that receives a series of pairs of inputs and weights. The major difference in Rosenblatt’s 

model is that inputs are combined in a weighted sum and, if the weighted sum exceeds a predefined 

threshold, the neuron fires and produces an output.  

 

Figure  2: Perceptron neuron model (left) and threshold logic (right). 
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Threshold 𝑇 represents the activation function. If the weighted sum of the inputs is greater than zero 

the neuron outputs the value 1, otherwise the output value is zero. 

Perceptron for Binary Classification 

With this discrete output, controlled by the activation function, the perceptron can be used as a binary 

classification model, defining a linear decision boundary. It finds the separating hyperplane that 

minimizes the distance between misclassified points and the decision boundary. The perceptron loss 

function is defined as below: 

 

To minimize this distance, perceptron uses stochastic gradient descent (SGD) as the optimization 

function. If the data is linearly separable, it is guaranteed that SGD will converge in a finite number of 

steps. The last piece that Perceptron needs is the activation function, the function that determines if the 

neuron will fire or not. Initial Perceptron models used sigmoid function, and just by looking at its shape, 

it makes a lot of sense! The sigmoid function maps any real input to a value that is either 0 or 1 and 

encodes a non-linear function. The neuron can receive negative numbers as input, and it will still be 

able to produce an output that is either 0 or 1.   The reason why ReLU became more adopted is that it 

allows better optimization using SGD, more efficient computation and is scale-invariant, meaning, its 

characteristics are not affected by the scale of the input. The neuron receives inputs and picks an initial 

set of weights random. These are combined in weighted sum and then ReLU, the activation function, 

determines the value of the output. 

 

Figure 3: Perceptron neuron model (left) and activation function (right). 

Perceptron uses SGD to find, or you might say learn, the set of weight that minimizes the distance 

between the misclassified points and the decision boundary. Once SGD converges, the dataset is 

separated into two regions by a linear hyperplane. Although it was said the Perceptron could represent 

any circuit and logic, the biggest criticism was that it couldn’t represent the XOR gate, exclusive OR, 

where the gate only returns 1 if the inputs are different. This was proved almost a decade later and 

highlights the fact that Perceptron, with only one neuron, can’t be applied to non-linear data. 

4. Results and Discussion 

Figure 4 displays the Receiver Operating Characteristic (ROC) curve of the Random Forest Classifier 

(RFC) model. The ROC curve is a graphical representation of the true positive rate (sensitivity) against 

the false positive rate (1-specificity) at various threshold settings. By plotting the ROC curve for the 

RFC model, users can assess its performance across different threshold values. A model with superior 

performance typically exhibits an ROC curve that is closer to the top-left corner of the plot, indicating 

higher sensitivity and lower false positive rate. This visualization aids users in evaluating the RFC 

model's discriminative ability and determining its suitability for malware prediction tasks. 
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Figure 4: ROC curve of RFC model. 

 

Figure 5: ROC curve of DTC model. 

Figure 5 showcases the ROC curve of the Decision Tree Classifier (DTC) model. Similar to Figure 4, 

the ROC curve provides insights into the DTC model's performance in distinguishing between malware 

and non-malware instances. By analyzing the ROC curve, users can assess the model's sensitivity and 

specificity across different threshold settings. Comparing the ROC curves of different models, such as 

RFC and DTC, enables users to make informed decisions regarding model selection and deployment in 

real-world scenarios. 

Figure 6 presents the ROC curve of the Deep Neural Network (DNN) model. As with Figures 4 and 5, 

the ROC curve visualizes the DNN model's performance in classifying malware and non-malware 

instances. By examining the ROC curve, users can evaluate the DNN model's ability to balance 

sensitivity and specificity, ultimately determining its efficacy in detecting malware in Industrial IoT 

systems. Comparing the ROC curves of various models aids users in selecting the most suitable model 

based on their performance requirements and constraints. 
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Figure 6: ROC curve of DNN model. 

 

Figure 7: Presents the all-model comparison graph of performance metrices. 

Figure 7 illustrates a model comparison graph depicting the performance metrics of different machine 

learning models. These metrics may include accuracy, precision, recall, and F1-score, among others. 

By presenting the performance metrics in a graphical format, users can easily compare the strengths 

and weaknesses of each model. This visualization facilitates data-driven decision-making by 

highlighting the models that excel in specific performance criteria. Users can leverage the model 

comparison graph to identify the most effective model for malware prediction tasks in Industrial IoT 

systems. 

Table 1 summarizes the performance metrics of three different machine learning models: Random 

Forest (RF), Decision Tree, and Deep Neural Network (DNN).  

• Random Forest (RF): The RF model shows high precision, recall, F1-score, and accuracy, all 

above 99%. This indicates that the RF model performs exceptionally well in both precision and 

recall, meaning it makes very few false positives and false negatives, and overall, it classifies 

instances with high accuracy. 
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• Decision Tree: The Decision Tree model also demonstrates strong performance with precision, 

recall, F1-score, and accuracy values ranging around 98%. However, these metrics are slightly 

lower compared to the RF model, suggesting that the Decision Tree may not generalize as well 

as RF, possibly due to overfitting or other limitations of the decision tree algorithm. 

• Deep Neural Network (DNN): The DNN model exhibits performance metrics similar to the 

Random Forest, with precision, recall, F1-score, and accuracy around 98%. This suggests that 

the DNN model performs comparably to the Random Forest in terms of classification accuracy, 

making it a viable alternative for the given task. 

Table 1: Performance metrics in a tabular form 

Model Precision Recall F1-Score Accuracy 

Random Forest (RF) 91.2988 89.7350 90.4236 91.3535 

Decision Tree 85.1450  86.37382  85.6555 86.5646 

Deep Neural Network (DNN) 98.6733 98.4302 98.549 98.6697 

 

5. Conclusion 

In conclusion, the development of an innovative and intelligent malware prediction system for Industrial 

IoT represents a significant step towards enhancing cybersecurity in industrial environments. By 

leveraging advanced machine learning and classification techniques, the proposed system offers 

proactive and adaptive security measures capable of preemptively detecting and mitigating malware 

attacks. Looking ahead, the future scope of this research includes further refinement and optimization 

of the malware prediction algorithms to improve detection accuracy and reduce false positives. 

Additionally, integrating threat intelligence feeds and collaborative defense mechanisms can enhance 

the system's capabilities in identifying and responding to emerging cyber threats. Furthermore, 

exploring the potential integration of blockchain technology for securing IIoT communications and data 

integrity presents an exciting avenue for future research. By leveraging blockchain's decentralized and 

immutable nature, it may be possible to enhance the resilience and trustworthiness of IIoT systems 

against malicious attacks. 
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