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ABSTRACT 

The multi-resolution approaches to dimer 

model simulation are explored in this paper. 

The heat bath's solvent particles interact 

with the dimer's monomers either by long-

range harmonic springs or short-range direct 

collisions. In-depth consideration is given to 

two possible multi-resolution approaches: 

(a) utilizing a coarser approach to describe 

solvent regions distant from the dimer, and 

(b) using a model with varying levels of 

resolution to describe each dimer monomer. 

The impact of a shared heat bath vs two 

uncoupled heat baths—one for each 

monomer—is then examined using these 

approaches. Moreover, a comparison with 

the dynamics of macroscopic Langevin 

equations is used to argue the validity of the 

multi-resolution approaches. 

1. INTRODUCTION 

Molecular dynamics (MD) approaches, 

based on the rules of classical mechanics, 

have been used to study the behaviour of 

complex biomolecules in biological 

applications1,2. They are written in terms of 

the positions and velocities of particles, 

representing either individual atoms or 

groups of atoms, describing parts of a 

biomolecule3–6. Inter-particle forces in MD 

models include combinations of short-range 

and long-range interactions7,8. In all-atom 

MD models, a common example of short-

range forces are interactions described by 

the Lennard-Jones potential9,10, while 

Coulomb forces provide an example of long-

range forces7 . Considering coarse-grained 

or caricature MD models, short-range 

interaction models include systems when 

particles only interact through direct 

collisions11–14, while long-range 

interactions also include models, where 

particles interact through harmonic-

springs15,16. Once the inter-particle 

interactions are specified, MD describes the 

time evolution of the model as a system of 

ordinary or stochastic differential equations 

for the positions of particles, which can also 

be subject to algebraic constraints, 

representing bonds between atoms or fixed 

internal structures of a biomolecule2,17,18, 

Biologically relevant simulations have to be 

done in aqueous solutions. A number of 

water models have been developed in the 

literature to use in all-atom MD simulations, 

including commonly used three-site (SPC/E, 

TIP3P) models19,20. In coarse-grained MD 

models, water is often treated with the same 

level of coarse-graining as other molecules 

in the system. For example, four water 

molecules are combined into a single coarse-

grained water bead in the Martini model3, 

while Wat Four water model6 uses four 

linked beads placed at the corners of a 

tetrahedron to collectively represent 11 

water molecules. In this paper, we consider 

two theoretical heat baths which enable 

more analytical progress than solvent 

models based on all-atom or coarse-grained 
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water models. In both cases, the 

convergence to the Langevin description of 

the solute particle can be established in a 

certain limit11–16. Our solute particle will 

also be treated with the same level of 

simplicity and described as a simple dimer 

molecule consisting of two monomers 

(beads) connected by a spring. 

Multi-resolution (hybrid) methods use 

detailed and coarse-grained simulations in 

different parts of the simulation domain 

during the same dynamic simulation21–24. 

Such methods have been developed in 

different application areas and at different 

spatial and temporal scales in the literature, 

including dual-resolution approaches 

AdResS and H-AdResS for all-atom MD 

simulations25–29, methods for coupling 

Brownian dynamics approaches with lattice-

based stochastic reaction-diffusion 

models30–32 or methods which make use of 

continuum mean-field equations for the 

macroscopic component of the 

simulation33–35. 

In some multi-resolution MD approaches, 

the region of high resolution moves together 

with the large microscopic structure of 

interest so that the high resolution model is 

always used for the whole considered 

structure, which can range in size from a 

single biomolecule (a protein or a DNA in 

solution27,28) to virus-like particles36,37. 

The structure of interest is placed in the 

centre of the simulation domain and it is 

solvated using a detailed atomistic MD 

water in its immediate neighbourhood, 

which is coupled with a coarse-grained 

water description in the rest of the 

computational domain. 

Another type of multi-resolution modeling is 

used for modeling of macromolecules where 

a detailed model of an important part of a 

macromolecule is coupled with a coarser 

model of the rest of the macromolecule. For 

example, atomistic detail of the active part 

of an enzyme has been coupled with a 

coarser model of the rest of the   protein38, 

different resolutions have been used in 

beadspring modelling of DNA39,40 or for 

modelling of polymer  melts41,42. 

In this paper, we study both multi-resolution 

approaches using a simple dimer model 

consisting of two monomers (beads) 

connected by a spring. Similar models, 

where a macromolecule is described as 

several beads, representing parts of the 

simulated biomolecule, connected by 

springs, have been obtained in the literature 

using the method of ultra-coarse-graining43. 

Thus our dimer model can be considered as 

a caricature of an ultracoarse-grained model 

of a macromolecule. We study its  behaviour 

in two theoretical heat baths. Our 

investigation focuses on multi-resolution 

(multiscale) descriptions of the solvent 

which can be described at the microscopic 

level of individual solvent molecules or at 

the macroscopic (dimer) level with the 

introduction of extrinsic random thermal 

forces on the monomers. We present models 

of the same dimer with various multi-

resolution descriptions for the solvent and 

highlight the conditions and reasons, when 

and why, different model approximations of 

the solvent may be made in simulations. 

Our paper is organized as follows. In 

Section II, we introduce the macroscopic 

dimer model with a macroscopic description 

for solvent forces. This macroscopic model 
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is fully described by Langevin equations. 

The Langevin macroscopic model is 

commonly used in simulation due to ease of 

implementation and analysis. We discuss in 

Section II the properties of this description 

with the intent to use these properties as 

benchmarks against which to compare 

microscopic and multi-resolution solvent 

models for the same dimer. Two theoretical 

microscopic approaches to model the 

solvent are introduced and studied through 

multi-resolution (simultaneous microscopic 

and macroscopic coupled) modelling in 

Sections III and IV. One of them is based on 

(very) shortrange interactions, as heat bath 

particles only interact with the dimer on 

contact. The other one is at the opposite 

extreme, as it is based on (very) long-range 

interactions, where the heat bath is modelled 

as a system of  many harmonic oscillators. 

II. THE DIMER MODEL 

In this section we will talk exclusively about 

the construction of the model for the dimer 

which will be used throughout this 

manuscript. In doing so, we describe the 

solvent at the macroscopic level as an 

extrinsically added random force. The result 

will be a set of Langevin equations. 

Throughout the manuscript we will modify 

the treatment of the solvent forces at various 

scales and hybrid resolutions but the 

underlying dimer model will be the same. 

We consider a model of a dimer which is 

described by positions of its two monomers, 

denoted by X1 = [X1;1, X1;2, X1;3] and X2 

= [X2;1, X2;2, X2;3], respectively. Each 

monomer has the same mass, M. We denote 

by R the vector describing the separation 

between the monomers, i.e. R = X2 − X1, 

and by R its magnitude R = |R|. The 

interaction between monomers is given in 

terms of the potential Φ ≡ Φ(R) : [0,∞) → R, 

which generates a force on each of the 

monomers with magnitude Φ′ (R). 
When the dimer is placed into a heat bath, 

there are additional forces on the two 

monomers caused by interactions with 

solvent molecules. The solvent forces can be 

modelled in a number of different ways and 

at various scales. In this manuscript, we 

consider two classes of models to describe 

the solvent-dimer interactions. The first, 

presented in Section III, models the solvent 

as a bath of point particles which collide 

with the monomers and elastic collisions 

(short-range interactions) contribute to the 

generation of the forces. In the second case, 

described in Section IV, solvent molecules 

are point particles which oscillate around 

and interact at a distance (through long-

range interactions) with the monomers. The 

solvent-dimer interactions are the sum of 

harmonic oscillatory forces acting on each 

of the monomers. Importantly, both 

descriptions under suitable assumptions lead 

to a macroscopic description of the dimer 

given by the following set of Langevin 

equations. 

 
where V1 = [V1;1, V1;2, V1;3] and V2 = 

[V2;1, V2;2, V2;3] are velocities of the first 

and second monomer, respectively, W1 and 

W2 are three-dimensional vectors of 

independent Wiener processes, D is a 

diffusion coefficient and γ is a friction 

coefficient, with dimension [γ] = [time]−1 . 

System (1)–(4) provides a macroscopic 
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model of the dimer, which we compare with 

microscopic (or multiresolution) MD 

simulations which explicitly model the 

solvent. Its validity for different MD models 

can be tested by comparing values of 

different dimer’s statistics at equilibrium, 

including its expected length Ld, dimer 

velocity autocorrelation function Cd(τ ) and 

dimer diffusion constant Dd, defined by  

 
where X = (X1+X2)/2 is the centre of mass 

of the dimer and V = (V1+V2)/2 is its 

velocity. These quantities can be obtained 

analytically for our macroscopic model (1)– 

(4) as follows. Adding equation (2) and 

equation (4) an noting that the sum of two 

independent Wiener processes is another 

Wiener processes W with an infinitesimal 

variance which is the sum of the variances 

of the original two processes, we obtain an 

Ornstein-Uhlenbeck process for V in the 

following form 

 
Therefore, we have 

 
Integrating over τ , we deduce 

 
Taking the difference of equation (4) minus 

equation (2), implementing the over-damped 

assumption (where γ is large) and combining 

the independent Weiner processes into a 

single Weiner processes W gives 

 
The stationary distribution corresponding to 

this process is proportional to 

exp[−Φ(R)/(MD γ)]. Normalizing, we find 

the distribution of dimer lengths equal to 

 
In the simulations that follow in this 

manuscript, we shall be assuming the dimer 

potential acts like a linear spring with a rest 

length of ℓ0 and a spring constant of k 

between the two monomers. That is, we 

shall assume 

 
Each monomer within the dimer is 

representing a half of a molecule of interest 

and the value of the spring constant 

indicates the flexibility in which the 

molecule can change its shape. In this paper, 

we consider the parameter regime where the 

spring constant k is sufficiently large so that 

the dimer has a well-defined structure. In the 

limit of large k, we have ε = MD γ/(k ℓ2 0 ) 

≪ 1. Then, Ld can be calculated as 

 
which is valid up to the first order in ε. In 

particular, the presence of heat baths extends 

the dimer from its rest length on average. In 

the following two sections, we study two 

theoretical MD models, where we use 

equations (6), (7) and (9) to compare the 

macroscopic theory with the results obtained 

by MD simulations. 

 

III. SHORT-RANGE INTERACTION 

HEAT BATH  
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We describe the two monomers as balls with 

radius r0 and mass M which interact with 

point solvent particles when they collide 

with them. In particular, this is a theoretical 

model of a (very) short-range interaction 

heat bath. Between collisions, monomers 

follow Newton’s second law of motion in 

the form 

 
where, following our notation introduced in 

Section II, positions and velocities of the 

monomers are denoted by Xi and Vi , 

respectively, and R = X2 − X1.  

Our short-range interaction heat bath is 

described in terms of positions x j i and 

velocities v j i , of heat bath particles, where 

i = 1, 2 is the monomer number and j = 1, 2, 

3, . . . , is the number of the heat bath 

particle. Notice that this formulation allows 

us to consider two important cases: (a) each 

monomer has its own heat bath; (b) a single 

heat bath is shared by both monomers. By 

comparing our simulation results in cases (a) 

and (b), we can explicitly investigate 

whether there are any significant 

hydrodynamic interactions between the 

monomers. In the case (b), we simplify our 

notation by describing particles of the single 

heat bath by  

 
In both cases (a) and (b), we assume that all 

heat bath particles have the same mass, m, 

and define (dimensionless) parameter µ by 

 
We are interested in the parameter regime 

where µ ≫ 1. Our MD model is based on 

elastic collisions of heavy monomers (balls 

with mass M and radius r0) with point heat 

bath particles with masses m. We assume 

that the collisions are without friction, then 

conservation of momentum and energy 

yields the following formulae for post-

collision velocities12 

 
where v j i is the velocity of the heat bath 

particle which collided with the i-th 

monomer, tildes denote postcollision 

velocities, superscripts ⊥ denote projections 

of velocities on the line through the centre of 

the monomer and the collision point on its 

surface, and superscripts k denote tangential 

components.  

Heat bath models based on elastic 

collisisions (13)–(14) have been studied by a 

number of authors11–14. Consider a single 

monomer in infinite domain R 3 , and let the 

heat bath consist of an infinite number of 

particles with positions distributed according 

to the spatial Poisson process with density  

 
This means that the number of points in a 

subset Ω of R 3 has its probability mass 

function given by the Poisson distribution 

with mean λµ|Ω|, where |Ω| is the volume of 

Ω. Let the velocities of the heat bath 

particles be distributed according to the 

Maxwell-Boltzmann distribution 

 



ResMilitaris,vol.11,n°1 ISSN: 2265-6294 Winter-Spring (2021) 

 

                                                                                                                                                                               244 

Then the monomer’s behaviour is known to 

converge to the Langevin dynamics12,14. In 

particular, if we consider that each monomer 

has its own heat bath, we can show that the 

position and velocity of the monomers, Xi 

and Vi , converge (in the sense of 

distributions) to the solution of (1)–(4) in the 

limit µ → ∞. 

In reality all beads representing a 

macromolecule exist within a single heat 

bath. Thus, we ask whether the correlations 

introduced by a bath of solvent which 

interacts with both monomers has a non-

negligible affect on the equilibrium statistics 

of the dimer. Introducing such coupled heat 

baths for both short-range (in this section) 

and long-range (in Section IV) interactions 

we study whether there is a significant 

difference between the one-bath and two-

bath models as we vary ℓ0, the separation 

distance, introduced in equation (8). In order 

to study this problem, we make use of multi-

resolution modelling. 

A. Multi-resolution model using a co-

moving frame  

The solvent in the short-range heat bath 

interacts with the monomers of the dimer 

through direct contact. In order to simulate 

the model for long times, i.e. where the 

dimer has undergone a large excursion, the 

simulated domain must be vast as will be the 

number of solvent particles that must be 

modelled. We present a multiresolution 

approach where we only model the solvent 

that is within the close vicinity of the dimer. 

We consider a co-moving cubic frame of 

length L that is centered at Xf(t), which we 

here identify with the centre of mass of the 

dimer at time t, i.e. 

 

Within this frame we explicitly model the 

heat bath with solvent particles, i.e. they are 

simulated in the cubic box 

 
Externally we model the heat bath as a 

continuum, where the particles are 

distributed according to the spatial Poisson 

process with density λµ given in (15) and 

the velocities are distributed according to 

fµ(v) given in (16), see Figure 1(a) for a 

diagrammatic representation of the multi-

resolution framework (drawn for clarity in 

two spatial dimensions, while all our 

simulations are three-dimensional). As the 

dimer moves around in R 3 the frame will 

move with it. In order for the multi-

resolution model to capture the full model 

where solvent particles are distributed in the 

entire domain, R 3 , we need to introduce 

new solvent particles at the boundary of the 

frame. 

Consider that time is discretized using small 

time step ∆t, i.e. if the current time is t, we 

want to calculate the state of the system at 

time t + ∆t. In our simulations of the multi-

resolution model we need the probability of 

introducing a particle at a boundary of frame 

(19) in a timestep of length ∆t and 

subsequently the distribution of the position 

xnew and velocity vnew of the new solvent 

particle. For simplicity we transform into the 

coordinate system of the co-moving frame 

which over an interval of length ∆t has 

velocity 

 
The frame is always translated to occupy the 

region [0, L] 3 . Thus, the velocities for the 

solvent particles in the new reference frame 
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are given by wj = v j − Vf . We first 

calculate the density of particles that enter 

the frame via a particular boundary within a 

timestep of length ∆t. Take, as an illustrative 

example, the boundary face corresponding 

to {x1 = 0}. Consider particles which are in 

half-space (−∞, 0) × R 2 at time t. These 

particles have not yet been explicitly 

included in the simulation. Some of them 

will be in half-space (0,∞) × R 2 at time t + 

∆t. Their density, h(x1), only depends on 

their first coordinate x1 ∈ (0,∞). We can 

calculate h(x1) by integrating density (15)–

(16) over solvent particles which are at x ′ 1 

∈ (−∞, 0) at time t and have the appropriate 

velocity to reach x1 ∈ (0,∞) at time t + ∆t, 

namely as14 

 
where Vf;1 is the first component of the 

frame velocity and erfc(z) = 2/ √ π R ∞ z 

exp(−s 2 ) ds is the complementary error 

function. Integrating (21) over the domain 

(0,∞) × [0, L] × [0, L] gives us the average 

number of particles that have entered the 

frame from the {x1 = 0} boundary in a time 

interval of length ∆t as 

 

 
FIG. 1. A diagrammatic representation of 

multi-resolution approaches for a dimer in a 

heat bath with short-range interactions. (a) 

Simulation of the whole dimer in a co-

moving frame. The green box depicts the co-

moving frame that is centred about the 

dimer. The blue dots correspond to solvent 

molecules that are explicitly modelled. 

Solvent molecules are not explicitly 

modeled in the external gray regions. (b) 

Simulation of one monomer in a co-moving 

frame. (c) Simulation with a fixed region of 

space  where an MD model is explicitly 

used. A dimer molecule can move to the 

gray region where it is simulated using the 

Langevin  description. 

In our simulations we choose a timestep 

small enough that pin ≪ 1, we can therefore 

use pin as the probability of introducing a 

new solvent particle. Let z = [z1; z2; z3] be 

the position of the new solvent particle in 

the coordinate system of the co-moving 

frame. Then coordinates z2 and z3 are 

uniformly distributed in (0, L) and the first 

coordinate can be sampled from the error 

function distribution 

 
where C1 is a normalizing constant. Then 

the position of the new solvent particle in 

the original coordinates is xnew = z + Xf(t + 

∆t) − [L/2, L/2, L/2]. The velocity, w, of the 

new particle in the co-moving frame must 

have a first coordinate exceeding z1/∆t in 

order to reach z1 in a time interval of length 

∆t. Noting that w = vnew − Vf we write 

down the distribution of the velocity as the 

following truncated Gaussian distribution 

 
where C2 is a normalizing constant and H(·) 

is the Heaviside step function, satisfying 

H(y) = 1 for y ∈ [0,∞) and H(y) = 0 

otherwise. The position and velocity of 
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solvent particles introduced at the other five 

faces can be done by symmetric 

modifications of the above distributions. 

Random numbers from distributions (23) 

and (24) can be efficiently sampled using 

acceptance-rejection algorithms. We use an 

acceptance-rejection method for the 

truncated normal distribution (24) presented 

in the literature44, while we sample random 

numbers from the distribution (23) using the 

acceptance-rejection algorithm presented in 

Table I. This is a generalization of the 

acceptance-rejection algorithm for sampling 

random numbers according to the 

distribution √ π erfc(z) previously used in 

simulations in the stationary frame14. In the 

case of the distribution (23), we need to 

sample random numbers according to the 

probability distribution. 

 

 
TABLE I. Acceptance-rejection algorithm 

for sampling random numbers according to 

the probability distribution p(z; β) given by 

(25). 

where β ∈ R is a constant and C3(β) is the 

normalizing constant given by 

 
B. Monomers with different resolution 

 As the length of a polymer (i.e. numbers of 

monomers) increases, a model incorporating 

solvent particles around each of the 

monomers becomes increasingly 

computationally expensive. However, a fully 

coarse-grained Langevin model of a 

polymer such as the Rouse model39 can 

lack the required level of detail. Thus, some 

multi-resolution approaches for simulating 

macromolecules only model an important 

(small) part of a macromolecule using a 

detailed modelling approach38–42. In our 

case, we can mimic such methodologies by 

modelling the first monomer with explicit 

solvent with a heat bath of physical 

molecules, while the second monomer is 

modelled using the Langevin equations (3) 

and (4). Such a multi-resolution approach is 

schematically shown in Figure 1(b). To 

simulate this model we use a co-moving 

frame, given by equation (19), which is 

centered around the first monomer, i.e. Xf(t) 

= X1(t). 
One iteration of the algorithm is presented 

as Algorithm [M1]–[M5] in Table III. To 

begin, we initialize the particle positions and 

velocities in the similar way as in the case of 

Algorithm [S1]–[S7], with the only 

difference that the cubic frame (19) is now 

centered around the first monomer. Steps 

[M1] and [M2] are directly equivalent to 

steps [S1] and [S2]. In Step [M3], we update 

the position and velocity of the second 

monomer by  

 
where ξ is sampled from the normal 

distribution with zero mean and unit 

variance. That is, we have replaced the heat 

bath of the second monomer by solving the 

corresponding Langevin equation (1)–(4) 

using the standard Euler-Maruyama 

integrator. There have been other schemes 

developed in the literature for discretizing 
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the Langevin equation such as van 

Gunsteren and Berendsen45 and the 

Langevin Impulse integrators, which capture 

the Langevin dynamics more accurately 

especially in the presence of forces, such as 

the spring force between the monomers46. 

Another option would be to consider the 

BBK integrator47, which we use in Section 

IV A, where we present a multi-resolution 

algorithm for the long-range interaction heat 

bath model and discretize the Langevin 

equation using a combination of the velocity 

Verlet and Euler-Maruyama integrators, see 

equations (45)-(49). An additional approach 

is the Verlet scheme48 that approximates the 

velocity using a central difference 

discretization rather than the forward 

difference approach used in the Euler-

Maruyama method, or Runge-Kutta 

methods49, which could further reduce the 

error of the multi-resolution simulations. 

 
TABLE III. One iteration of the multi-resolution 

simulation algorithm of the dimer in the heat 

bath with short-range interactions, where the 

second monomer is simulated by the Langevin 

dynamics. 

In order to compare simulations of the 

multi-resolution model with simulations of 

the Langevin model (1)–(4) we use the 

velocity autocorrelation function of the 

dimer, Cd(τ ), given by equation (5). It has 

been analytically calculated for the 

Langevin description in equation (6). In 

Figure 4, we present numerical estimates of 

the velocity autocorrelation function of the 

multi-resolution model from long time 

simulation data, using definition (5).  

Our results compare well with the 

theoretical result for the Langevin model, 

though it seems like there is a slightly raised 

value for Cd(0). Using (7), we can estimate 

the diffusion constant of the dimer Dd by 

numerically integrating the velocity auto-

correlation function in interval [0, 1]. We 

obtain Dd ≈ 0.529, while its theoretical 

value for the dimer model is given in 

equation (7) as D/2 = 0.5. Another approach 

is to fit the exponential function, in the form 

equation (6), to the computational result 

presented in Figure 4. In this way, the values 

of both D and γ can be estimated 

simultaneously. We found that D ≈ 1.0714, 

which is higher than our parameter value D 

= 1, and γ ≈ 9.6064, which is lower than γ = 

10 used in our simulations. This could 

suggest that the value of λµ is too low or 

that of σµ is too high in our simulations. 

However, when these quantities are 

measured during the simulations we do not 

observe any deviation. 
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FIG. 4. The velocity autocorrelation function for 

the multiresolution model (blue solid line) for 

short-range interactions. The function is 

estimated from long time simulation over 

dimensionless time of 500 time units. It is 

compared with the result for the Langevin 

description of the whole dimer, given by 

equation (6) (red dashed line). The parameters 

are r0 = 0.08, γ = 10, D = 1, µ = 103 , k = 106 , 

ℓ0 = 4r0, ∆t = 10−6 and L = 0.32. 

This suggests that, rather than our sampling 

methods, there are small errors introduced 

by our implementation of the moving frame, 

or more profound boundary effects 

introduced by the small size of the frame. A 

potential problem in the implementation of 

the co-moving frame, is that solvent 

particles that leave the frame never return. 

For a stationary frame this is valid as the 

monomer cannot interact with a particle that 

leaves. However, for a co-moving small 

frame centred about the monomer, a solvent 

particle could leave the frame and return at a 

later time in the simulation. This is not taken 

into account in the presented algorithms. 

IV. LONG-RANGE INTERACTION 

HEAT BATH  

Coarse-grained models of molecular systems 

can be written in terms of beads interacting 

through coarse-grained force fields. Each 

bead represents a collection of atoms and a 

coarse-grained potential energy can be 

constructed from detailed all-atom MD. 

Such an approach can usually provide a 

good description of equilibrium properties 

of molecular systems, but it does not 

necessarily lead to correct dynamics if the 

time evolution of the system is solely based 

on the Hamiltonian dynamics corresponding 

to the coarse-grained potential energy 

surface50. Dynamical behaviour can be 

corrected by introducing additional degrees 

for freedom (fictitious particles) interacting 

with each coarse-grained bead50–52. 

Fictitious particles can then be subject to 

suitable friction and noise terms to correct 

the dynamics. 

Considering our dimer molecule model as an 

example of a coarse-grained molecule, 

written in terms of two coarse-grained beads 

(monomers) interacting through coarse-

grained potential energy (8), then each 

monomer could be coupled with one or 

several fictitious particles interacting with 

the monomer through a suitable harmonic 

spring term50,51. Our long-range interaction 

heat bath is based on this approach, by 

assuming that the i-th monomer, i = 1, 2, is 

coupled with Ni harmonic oscillators, in a 

manner similar to well known theoretical 

heat bath models15,16. Then equations 

(10)–(11), expressing Newton’s second law 

of motion, include additional terms as 

follows15 

 
where x j i is the position of the j-th solvent 

particle which interacts with the i-th 

monomer through a harmonic spring with 
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spring constant ki,j and interaction constants 

αi,j , j = 1, 2, . . . , Ni , i = 1, 2. Equations 

(35)–(36) are coupled with the evolution 

equations for solvent particles. We assume 

that v j i is the velocity of the j-th solvent 

particle interacting with the i-th monomer. 

Moreover, we assume that all oscillators 

have the same mass, m. Using Newton’s 

second law of motion, we get the following 

evolution equations for the heat bath 

oscillators 

 
for j = 1, 2, . . . , Ni and i = 1, 2. Unlike in 

some fictitious particle models50–52, we do 

not include friction and random forces into 

equation (38) for solvent, because we 

assume that we explicitly model all solvent 

particles, i.e. N1 and N2 are considered to 

satisfy N1 ≫ 1 and N2 ≫ 1. We are 

therefore working ‘close’ to the limit N1 → 

∞ and N2 → ∞, in which we can get the 

convergence of our long-range interaction 

heat bath to the Langevin dynamics as 

discussed below. In practice, it is impossible 

to include all solvent molecules in 

simulations and friction and noise terms are 

still included to control temperature of the 

simulated system2,53. We can solve the 

solvent equations of motion (37)–(38) to 

give2,54 

 
where x j i (0) is the initial position of the j-

th heat bath particle corresponding to the i-

th monomer, v j i (0) is its initial velocity 

and ωi,j = (ki,j/m) 1/2 is its frequency 

Substituting for x j 1 and x j 2 in dimer’s 

equations of motion (35)–(36), we obtain the 

following coupled system of generalized 

Langevin equations 

 
where the friction kernel κi(τ ) and noise 

term ξi ≡ ξi (t) = [ξi;1, ξi;2, ξi;3] are given 

by 

 
for i = 1, 2. We assume that initial positions 

and velocities of solvent oscillators, x j i (0) 

and v j i (0), are both independently sampled 

according to their equilibrium distributions. 

Then noise autocorrelation function is given 

by the generalized fluctuation-dissipation 

theorem 

 
where kB is the Boltzmann constant and T is 

the absolute temperature. Next, we assume 

that the frequencies ωi,j are sampled from a 

(continuous) exponential distribution with 

mean ω and we set our interaction constants 

equal to 

 
where γ > 0 is the friction constant used in 

equations (2) and (4). Then friction kernel 

(41) becomes 
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FIG. 5. The extension of the average length of a 

dimer from its separation distance ℓ0 for long-

range interaction heat bath models. The values 

of parameters are the same as in Figure 3, 

together with ω = 100, N1 = N2 = N = 104 , M = 

1 and m = 10−3 , which give the same value of µ 

= M/m as used in Figure 3. The simulations for 

the single heat bath case use parameter choice 

(43) with α 2 j = γ ω/(N π kj ), kj = m ω2 j /2, 

and ωj sampled according to the exponential 

distribution with mean ω, confirming result 

given in equation (44) (green dashed line). The 

results for the two heat bath case are compared 

with the result obtained for the Langevin model 

in equation (9) (black solid line). 

 
TABLE IV. One iteration of the multi-resolution 

simulation algorithm of the dimer in the heat 

bath with long-range interactions, where the 

second monomer is simulated by the Langevin 

dynamics. 

This result is plotted in Figure 5 together 

with results obtained by illustrative 

simulations. We use a long-time simulation 

of length 200 dimensionless time units, with 

monomers initially placed at separation ℓ0 

and averaging over the second half of the 

simulation (of length 100 dimensionless 

time units) to obtain the presented values of 

dimer’s expected length Ld. 

A. Multi-resolution modelling of dimer  

In Figure 1(b), we use our dimer example to 

illustrate a multi-resolution approach which 

models a part of a molecule using a detailed 

MD approach, while using a coarser 

description of the rest of the molecule. Here, 

in the same manner as carried out for our 

short-range model in Section III B, we 

illustrate such a multi-resolution approach 

using our long-range interaction MD model. 

We use the Langevin model (1)–(4) to 

coarse-grain one of the monomers, while the 

other monomer is modelled in detail using 

the MD model with its heat bath described 

by harmonic oscillators (37)–(38). As in 

Figure 4, we again calculate numerical 

estimates for the velocity autocorrelation 

function, Cd(τ ) in equation (5), from long 

time simulations of the dimer after 

equilibrium has been reached. The pseudo-

code of one iteration our multi-resolution 

algorithm is presented as Algorithm [L1]–

[L5] in Table IV. Algorithm [L1]–[L5] is 

based on the velocity Verlet integrator, 

where both monomers are updated by 

 
where Ai , for i = 1, 2, is the acceleration of 

the corresponding monomer. For the first 

monomer, its acceleration A1 is defined as 
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the right hand side of equation (35) divided 

by M, i.e. 

 
For the second monomer, we use the BBK 

integrator47,i.e. we define its acceleration as 

 
where ξ is sampled from the normal 

distribution with zero mean and unit 

variance. The corresponding solvent 

oscillator integrator is identical to the 

scheme (45)–(47), with X1, V1 and A1 

replaced by x j , v j and a j , respectively, 

where acceleration a j is defined as the right 

hand side of equation (38) divided by m, i.e 

 
The results obtained by Algorithm [L1]–

[L5] are compared with analytic results 

given by equation (6) for the Langevin 

model in Figure 6. We see that there is a 

good correspondence between these, 

suggesting that the value ω¯ = 100 is large 

enough to create an accurate Dirac delta 

approximation from the kernel function (42), 

along with having a large enough number of 

oscillators, N1 = 105 , in our heat bath for 

our other approximations to hold. If these 

conditions did not hold, we would see that 

our kernel function has a different form (for 

example, decaying at a slower rate), and in 

this case we would have to use a generalized 

Langevin model as our coarse-graining 

approach in order to capture the dynamics of 

the dimer with sufficient accuracy. 

 
FIG. 6. The velocity autocorrelation function for 

the multiresolution model (blue solid line) for 

long-range interactions, estimated from long 

time simulation over dimensionless time of 103 

dimensionless time units. It is compared with the 

result for the Langevin description of the whole 

dimer, given by equation (6) (red dashed line). 

The parameters are the same as in Figure 4, 

namely γ = 10, D = 1, k = 106 , M = 1, m = 

10−3 , ℓ0 = 0.32, together with ω = 100 and N1 

= 105. 

V. DISCUSSION AND CONCLUSIONS  

In this paper, we have used two theoretical 

heat baths. Although these heat baths are 

based on qualitatively different descriptions 

of solvent-dimer interactions, they both lead 

to the Langevin description, given in 

equations (1)–(4), in a certain limit. In 

particular, we can use this limiting process 

to coarse-grain a part of the simulated dimer 

molecule, while use a detailed MD model to 

describe the rest of the molecule. Such a 

multi-resolution approach has potential to 

significantly speed up computer simulations 

of dynamics of macromolecules38–42 , 

provided that it is combined with additional 

multiscale and multi-resolution 

methodologies, discussed below. Our long-

range interaction model leads to the system 

of generalized Langevin equations, given by 
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equations (39)–(40). Although we have 

worked in the parameter regime where the 

generalized Langevin equations can be well 

approximated by the system of Langevin 

equations given by (1)–(4), this will not be 

the case in other parameter regimes and for 

more realistic solvent descriptions, 

especially when the memory kernel is 

estimated from MD simulations58,59. One 

possible strategy in this case is to couple a 

detailed MD model with a stochastic coarse-

grained model which is written with the help 

of additional variables50–52. To improve 

the efficiency of simulations further, one can 

then coarse-grain such a generalized 

Langevin description using a Brownian 

dynamics approach14,60. Brownian 

dynamics modelling can be further coupled 

with stochastic reaction-diffusion modelling 

based on lattice-based (compartment-based) 

methods22. Lattice-based models are very 

attractive for simulations of intracellular 

processes, because they enable modelling of 

spatio-temporal processes in the whole cell 

or its significant part61. Coupling Brownian 

dynamics with compartment-based 

approaches has been used in a number of 

applications, including multi-resolution 

modelling of actin dynamics in 

filopodia62,63 or for modeling intracellular 

calcium dynamics64 . 

In this paper, we have investigated multi-

resolution approaches, schematically 

described in Figure 1(a) and 1(b). Another 

class of multi-resolution approaches in the 

literature considers a fixed subdomain of the 

computational domain where a detailed 

modelling approach is used, which is 

coupled with a coarser model in the rest of 

the simulation domain21,22. Such an 

approach is useful, for example, when 

modelling intracellular ion dynamics. Ions 

pass through an ion channel in single file 

and an MD model has to be used to 

accurately compute the discrete, stochastic, 

current in the channel65,66, while the details 

of the behaviour of individual ions are less 

important away from the channel where 

copy numbers may be very large. Thus, we 

can improve efficiency of our simulations if 

we allow ions to pass between regions with 

an explicitly modelled heat bath and a 

region where their trajectories are described 

by coarser stochastic models51. 

A similar multi-resolution approach can also 

be designed for our illustrative dimer model. 

It is schematically shown in Figure 1(c), 

where we identify the region with explicitly 

simulated heat bath as {x1 > b} =(b,∞) × R 

2, where b is the fixed position of the 

boundary. We are again interested in the 

behaviour of the dimer in the MD model 

which would be considered in the full space, 

R3. However, we now want to replace 

solvent particles which are in {x1 < b} = 

(−∞, b) × R2 by a coarser Langevin 

description (1)–(4). To do that, we have to 

carefully consider how we handle the 

transfer of monomers between {x1 > b} and 

{x1 < b}. In Figure 1(c), we present a two-

dimensional illustration of a monomer when 

it intersects the interface, {x1 = b}. Such a 

monomer is subject to the collisions with 

heat bath particles on the part of its surface 

which lies in {x1 > b}. 

This has to be compensated by using a 

suitable random force from {x1 < b}, so that 

the overall model is equivalent to (1)–(4) in 

the Langevin limit. Such correction terms 

can be derived analytically for the case of a 
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spherical monomer in our short-range 

interaction heat bath and are presented in 

References14,54. They can be used to 

couple the MD model with its corresponding 

Langevin description, which can be further 

coupled with Brownian dynamics, simulated 

using a much larger time step14. 

Mathematical analysis of multi-resolution 

methodologies can make use of the analysis 

of the model behavior close to the 

boundaries of the computational domain. 

For example, derivations of reactive (Robin) 

boundary conditions of macroscopic models 

from their corresponding microscopic 

descriptions67–69 can be generalized to the 

analysis of behaviour of molecules close to 

hybrid interfaces in multi-resolution 

schemes21,30,31. Analysis of open 

boundaries of MD schemes (i.e. boundaries 

which can transfer mass, momentum and 

energy) can lead to further understanding of 

multi-resolution schemes such as AdResS 

and hybrid continuum-particle dynamics70, 

which enable efficient simulation of 

biomolecules at realistic physiological 

conditions71. 

Equations for coupled detailed/coarse-

grained models can be systematically 

derived using Zwanzig’s projection  method, 

which has been used to address co-existence 

of atoms and beads (larger coarse-grained 

units) in the same dynamic 

simulations72,73. The equations of motion 

take the form of dissipative particle 

dynamics, which have been coupled with 

atomistic water simulations to design multi-

resolution schemes in the literature74. Other 

multi-resolution methods couple atomistic 

water with specially designed coarse-grained 

water models75 or with a continuum 

approach35. Coupling discrete and 

continuum approaches can also be done for 

different molecular species present in the 

system and our choice of a modelling 

approach for each species can be based on 

its relative abundance76–78. 

One of several important points which have 

been left out from our discussion is the 

discretization of time. Although our 

illustrative simulations use the same time 

step for both the MD model and the 

Langevin description,  this is not the most 

efficient or desirable strategy, because the 

MD model requires much smaller time step 

than the corresponding Langevin equation. 

There is potential to design more efficient 

schemes by updating the coarser description 

only at certain multiples of the time step 

which is used in the most detailed model39. 

This is also the case when a modeller further 

coarse-grains the Langevin description into 

a Brownian dynamics model which uses 

even large timesteps14. 
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