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Abstract: Malware continues to pose a persistent and dynamic threat 

in the digital realm, demanding innovative detection and classification 

strategies. This study emphasizes the importance of feature fusion, 

which integrates diverse attributes from multiple sources to capture 

both static and dynamic aspects of malware comprehensively. 

Conventional single-feature approaches exhibit precision limitations, 

driving the exploration of multiple characteristics for fusion and the 

adoption of a unified learning algorithm for malware family 

classification. The research methodology involves meticulous feature 

extraction, followed by the application of KNN, XGBoost, 

DecisionTree, and random forest algorithms for classification, 

leveraging the most critical features. Experimental findings 

demonstrate a significant enhancement in classification accuracy 

compared to traditional methods, effectively reducing false positives. 

Fusion techniques enhance malware classification accuracy by 99.11% 

with dynamic features, 97.31% with static features, and 99.88% with 

hybrid analysis, surpassing conventional methodologies.  

Keywords: machine learning, malware classification, feature fusion, 

feature selection, PE files 

1. INTRODUCTION 

A major concern in cybersecurity nowadays is effective 

malware categorization and detection because of the worrying 

rise in malware threats in the digital sphere. Cybercriminals are 

always coming up with new strategies to use their malicious 

software to deceive computer systems, networks, and the data 

that is contained therein. In response to this worry, malware 

analysis has been the topic of ongoing innovation. Examining 

the sequence of system API calls is one of the most popular 

methods for keeping an eye on programme activities. This is so 

that everything the application performs, including file and 

network access, is recorded. The names of the API and its 

parameters are necessary for each API call in the series [1]. An 

API request's parameters, which are always given as 

name=value pairs, can contain any number between 0 and 

many. A variety of feature engineering methods are available 

for handling behavior-related data processing. We may obtain 

the N most common n-gram characteristics (where n = 1, 2) of 

the API name, assuming it is a string. Feature extraction is a 

difficult operation as parameters might be many various types, 

such as texts, numbers, locations, and more. The two main 

techniques that may be applied to learn more about the features 

of malware are static and dynamic malware investigation. The 

use of static features makes it possible to extract important 

information about the file's compositional details. PE-section, 

import, header, byte, and Opcode histograms are commonly 

used for static malware analysis [2]. 

But given these traits, it's likely that important information 

on cutting-edge malware strategies—like obfuscation, 

metamorphism, mutation, and oligomorphic code—that are 

used to evade detection will be left out. Dynamic malware 

analysis may record the behaviours and activities of the 

executable file, which can then be utilised to identify and 

classify malware [3]. The feature set that is most commonly 

used in dynamic malware analysis is the API call sequencing 

feature. This is because it not only documents the binary's 

interactions with various system instances, but it also discloses 

the intent behind the virus's creation. Additionally, in order to 

more precisely identify weaknesses and boost efficiency, 

researchers used a technique called hybrid analysis, which 

leveraged an aggregation of static and dynamic features [4]. 

Deep learning has garnered a lot of attention and shown 

promise in the detection and classification of malware due to 

its ability to learn complex representations and patterns from 

complex data. Without the need for created features, deep 

learning models, such as CNNs and RNNs, may automatically 

learn hierarchical representations from raw data (such as 

opcode sequences, byte-level information, or binary code) [5]. 

This ability to automatically extract features from data has 

made it feasible to capture intricate viral patterns. Deep 

learning models may assess software behavioural patterns by 

examining series of system calls, API requests, or network 

data. Recurrent neural networks, in particular Long Short-Term 

Memory (LSTM) networks, have been used in malware 

analysis and classification utilising behavioural sequences. 

Deep learning techniques can combine static (file-based) and 

dynamic (behavior-based) analysis for comprehensive malware 

identification. Combining traits collected from static and 

dynamic analysis can lead to improved classification accuracy 

[6]. File headers and byte sequences are examples of static 

analysis features, whereas system actions and API requests are 

examples of dynamic analysis features. Researchers have 

looked into the use of deep learning algorithms to recognise 

malware and block its evasion strategies. Robustness 

techniques and adversarial training have been used to create 

models that are less likely to escape. Ensemble methods that 

combine domain adaptability, transfer learning techniques (pre-

trained models), and deep learning architectures have been 

used in malware research. These techniques leverage 

information from large datasets or related fields to improve 

classification accuracy in scenarios where labelled data is 

scarce [7]. Integrating feature fusion approaches into machine 

learning frameworks is an intriguing and potentially profitable 

direction for malware classification [8]. This approach 

considers the complexity and diversity of malware's behaviours 

and characteristics. Feature fusion recognises that complete 

malware classification requires an integrated perspective 

integrating several properties from various sources, including 
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behavioural traits, network traffic patterns, and file-based 

features. Combining these several traits provides a more 

comprehensive picture of malicious software, which improves 

classification models' resilience and accuracy [9]. Recent 

experiments with feature fusion and machine learning have 

shown promising improvements in the accuracy of malware 

categorization. These techniques raise detection rates while 

being impervious to malware evasive strategies. This work 

investigates the combination of cutting-edge machine learning 

models and feature fusion techniques, adding to the ongoing 

efforts to fortify cybersecurity and protect digital environments 

against new threats:  

In this study, we combine feature fusion and machine 

learning to examine the latest advancements and trends in 

malware classification. Here's an explanation of feature fusion, 

machine learning, and malware classification. In this study, we 

explore how these approaches tackle contemporary 

cybersecurity concerns and offer experimental results. 

Researchers, cybersecurity professionals, and businesses 

searching for tactics and fixes to counter new malware threats 

may find great value in this study. 

 

2. RELATED WORKS 

Malware samples are analysed to find the characteristics 

that may be used to determine them. Machine learning 

approaches [10] state that as malware becomes more complex 

throughout its lifespan, understanding cryptic malware 

protection has become essential to malware detection. 

Furthermore, two forms of malware analysis are still often 

employed in the process of detecting potentially harmful apps 

[11]. ML-based malware detection algorithms analyse data 

through feature extraction. Machine learning techniques were 

employed using these characteristics (API calls, Assembly, and 

Binary) [12] to categorise malware. 

In the topic of malware classification, several methods for 

recognising and categorising malware have been developed. 

Conventional approaches that rely on patterns, such signature-

based detection, can fall short when faced with new and 

unexpected threats [13]. When employing heuristic-based 

algorithms to identify potential threats based on behavioural 

patterns, there is a potential for false alarms. The use of 

supervised, unsupervised, and deep learning techniques in 

machine learning to evaluate massive malware data sets and 

differentiate between safe and hazardous software has resulted 

in a significant shift. Moreover, behavioural analysis, which is 

done in controlled environments, can be used to identify 

dangerous behaviours [14]. Some advanced techniques use 

machine learning, behavioural analysis, heuristics, and 

signatures to create hybrid models that combine several 

detection techniques for increased accuracy [15]. Using 

dynamic analysis, which involves seeing malware in operation 

in a controlled environment in real-time, one may understand 

how malware impacts systems. Additionally, combining 

several data sets from various sources is a potent technique that 

offers a thorough picture of malware activities [16]. As the 

cybersecurity landscape shifts, ongoing research attempts to 

enhance and modify these strategies to address the always 

evolving cyber threats. 

In contrast to conventional malware, which was only run 

once, current malware is more specialised, stealthy, and 

persistent [17]. Conventional malware was broad and easily 

accessible. Since zero-day infections make use of more recent 

vulnerabilities that have not yet been made public, they are 

challenging to identify [18]. Artificial Intelligence, machine 

learning, and deep learning techniques are being used in many 

computer science domains, from natural language processing to 

virus detection techniques. After researching Android malware, 

author [19] is currently developing a multi-feature consensus-

based decision fusion adaptive identification component to use 

this malware (MCDF). Srndic et al. [20] used machine learning 

approaches in combination with static analysis to categorise 

malware samples. In this study, two distinct file formats were 

examined. Resource-draining executables are increasingly 

being included into PDF and SWF files by malware writers. In 

this study, 40,000 SWFs and 440,000 PDFs were examined. 

The design of this technology allowed for the detection of 

harmful code in Adobe PDF and Flash (SWF) files.  

Signatures play a major role in an anti-virus or malware 

detection system's ability to recognise unusual activities. This 

method looks for certain viral patterns in a huge sample of 

signatures. The signature-based approach looks for 

disturbances by consulting a list of known assaults that has 

been previously provided. This configuration may detect 

malware in a wide range of applications, but in order to stay 

effective, the designated signature database has to be updated 

on a regular basis. Because adaptable malware is continually 

growing, it is therefore less successful in detecting hazardous 

exercises when utilising the signature-based technique [21]. 

The anti-virus provider uses heuristic methods that are able to 

recognise harmful software and handle their signatures [22]. 

  

Static feature extraction is done with feature extraction 

programmes like HashGenerator, PsStudio, PeView, and 

PeExplorer. Tools for disassembling code, such as Lida, 

Cpstone, and IDA Pro, are used to do static analysis at the code 

level. Static malware features such as Opcode [15], String [23] 

(‘APIcallname’, ‘mytime’, ‘kernal32’), and N-gram [23] 

(‘mail’, ‘ili,’ and ‘ftw’)('PUSH, ADD, SUB, MOV,'), hash 

values ('e5dadf6524624f79c3127e247f04b548'), PE For 

analysis, the header data [24] (field value, checksum, size, and 

symbol) is extracted. It may be possible to simplify the 

signature-based identification problem to a straightforward 

string matching problem. This basically means that it keeps 

searching over a large string collection for a pattern or 

substring. Approximately 45–75 percent of the computational 

time is devoted to this process alone [25]. In string matching, 

two of the most used algorithms are Aho-Corasick and Boyer-

Moore. Even with the prevalence of unpacking techniques, de-

obfuscating every malware component is a challenging task.  

 A malware detection approach for mobile phones based on 

an artificial immune system was proposed by WU Bin et al. 

(2015) [26]. To improve the accuracy of detection, a clone and 

mutation approach is used in addition to different detectors. It 

was also demonstrated that current features are particular 

instances of fuzzy token similarity. Token-based resemblance 

and character-based resemblance were joined to form a new 
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similarity matrix. A signature-based method was created by 

Jiannan Wang et al. (2011) [27] to address the fuzzy-token 

similarity joins issue. It is discovered that the token-sensitive 

method performs better than other sig-nature strategies already 

in use. As an addition to the existing signature methods for edit 

distance, edit similarity was added. ScaleMalNet is a deep 

learning system for identifying zero-day malware that makes 

use of image processing, dynamic analysis, and static data, as 

recommended by the study in [8]. [28] proposed a strategy 

based on behavioural traits to define malware. They collect 

API call traces from malware samples in a controlled virtual 

environment and perform dynamic inspection on a dataset of 

typically early malware in order to have the suggested model 

eliminated. After the traces are analysed, more sophisticated 

features, or "actions," are produced. According to 

Arivudainambi, Varun, et al.'s methodologies [29], network 

traffic analysis may be used to identify malicious activity. 

Better anti-network traffic methodological strategies need the 

use of PCA. The suggested technique was evaluated by 

executing 1,000 malicious files in many sandboxes, including 

as Cuckoo, Limon, and Noriben. There was a 99 percent 

success rate in detecting malware using this strategy.  

Anti-virus or malware detection systems rely heavily on 

signatures to identify anomalous activity. This approach looks 

for certain patterns in a vast collection of signatures in order to 

detect infections. The signature-based method looks for 

disturbances using a previously specified list of known attacks. 

The setup can identify malware in a variety of situations, but in 

order to keep functioning, it needs regular updates to the 

signature database that is given. The signature-based method's 

effectiveness in identifying harmful activities is restricted since 

adaptable malware is constantly evolving [21]. To properly 

identify malicious software and preserve signatures, the anti-

virus provider use metaheuristic approaches [22]. 

programmes for extracting static features, such 

HashGenerator, PsStudio, PeExplorer, and PeView. 

Disassembler tools like Lida, Cpstone, and IDA Pro can be 

used for code-level static analysis. Some static elements, such 

N-grams, strings, opcodes, hash values, and PE header 

information, are retrieved in order to analyse the virus. If string 

matching turns out to be too challenging, signature-based 

identification can end up being quite simple. In real terms, this 

implies that it looks for patterns or substrings by sifting 

through a sizable string collection. Between 45 and 75 percent 

of the processing time is accounted for by this single procedure 

[25]. Well-known string-matching algorithms are Boyer-Moore 

and Aho-Corasick. Even with a number of unpacking 

techniques available, decrypting every piece of malware is still 

a difficult task. A malware classifier that could handle 

polymorphic patterns was developed by Narayanan et al. 

(2016) [30] using supervised machine learning techniques. 

 

There are two methods in which anomalies are incorporated 

into behavior-based techniques. An anomaly is a malfunction 

brought on by malicious files. Files that exhibit unusual 

behaviour that deviates from the behaviour of regular files 

stored are considered malicious. 

This section goes over behavioral-based malware detection 

techniques in depth. The use of sophisticated techniques to 

detect malware is mentioned. Bailey et al. (2007) [31] proposed 

one such technique that captured the API calls made by 

malware. In order to maintain appropriate precision while 

accounting for both dynamic and static inquiry points of 

interest, Eskandari et al. (2013) [32] introduced a novel hybrid 

approach called HDM-Analyzer. As a result, HDM-Analyzer is 

able to predict that there is minimal performance deterioration 

because the majority of the core leadership is based on actual 

data. Sheen and colleagues (2015) [19] created MCDF. By 

integrating the classifiers' choices using the collective 

technique based on the probability hypothesis, which is utilised 

to form a group of classifiers, malicious record characteristics 

such as the consent-based features and API call-based features 

are examined to deliver a better finding. 

 

Table.1. Tools used for static and dynamic 

analysis 

Static Analysis Tools Dynamic Analysis Tools 

IDA Pro (dissembler) ProcMon (logs lve system activity) 

Ghidra (dissembler) PeStudio (Windows executable 
analyzer) 

PeView (PE header 

information) 
Process Hacker (Gathering 

information of process) 

UPX Wireshark (packet analysis tool) 
YARA (string matching) TCPdump (TCP/IP packet 

analyser) 

x64dbg (reverse 
engineering) 

Regshot (snapshot of registry 
related files) 

HxD VmWare/VitualBox (virtual 
machine) 

PE-bear Comodo IMA (malware analysis 
sandbox) 

PeStudio (analyzing 
executables) 

Cuckoo Sandbox 

IOCFinder RegMon (registry monitoring) 

 

Utilizing supervised machine learning techniques, 

Narayanan et al. (2016) [30] built a malware classifier that was 

able to handle polymorphic. Ming et al. (2017) [6] have 

developed a substitution attack that affects behavior-based 

requirements to cover similar behaviors. The main attack 

approach is to replace a graph of system call de-pendency with 

its semantically equivalent variants so that the comparable 

malware test's secret unique family becomes characteristically 

distinctive. Malware researchers should thus devote more time 

and effort to the re-examination of identical samples that may 

have recently been studied, as a result of this. 

Deep learning is just one method within the larger field of 

machine learning [33]. It can be trained with data that is neither 

organized nor tagged. It collects data, processes it, and then 

forms conclusions based on patterns it finds about itself; this is 

quite similar to how the human brain works. Deep learning 

relies on neurons as its foundation [8]. 

3. PROPOSED APPROACH 

For accurate malware detection, using the relevant 

algorithm is important. When estimating supervised learning 

models based on feature engineering, the prior top performer is 
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Support Vector Machines (SVM) which is used [34]. The 

algorithmic conversions for machine learning models entail 

initializing and training each classifier and making predictions 

accordingly. For Random Forest (RF), the scikit-learn library is 

employed to instantiate a Random Forest Classifier, which is 

then trained on the training data. Predictions are generated 

using the trained model. XGBoost implementation involves 

converting the data into DMatrix format, setting appropriate 

parameters for multi-class classification, and training the model 

using the xgboost.train function. K-Nearest Neighbors (KNN) 

classifier is instantiated using KNeighborsClassifier, trained on 

the training data, and used to predict labels for the test data. For 

Decision Tree (DT), a DecisionTreeClassifier is initialized, 

trained on the training data, and utilized for generating 

predictions. These implementations enable the application of 

Random Forest, XGBoost, KNN, and Decision Tree algorithms 

for classification tasks, providing versatility in modeling 

approaches for different datasets and problem domains. After a 

thorough study, the machine learning model was selected 

because it performed exceptionally well with many feature sets 

obtained from different sources, including static analysis, 

dynamic analysis, and binary-to-image conversion techniques. 

To demonstrate how effective feature fusion is in enhancing 

classification accuracy, the chosen model is applied to the 

evaluation of the fused combination dataset for malware 

classification. Figure 1 shows the propose approach of malware 

classification The effectiveness of feature fusion in improving 

malware classification accuracy is demonstrated in this all-

encompassing method, which uses ML models, optimizes 

hyperparameters, evaluates performance across different 

feature sets, and finally uses a selected model for both the 

fused feature set and individual feature sets. 

 

 

Fig.1. Proposed classification scheme 

3.1. DATA SET 

The dataset is structured to assist in the classification and 

analysis of different malware types based on their families. It 

comprises a diverse set of malware types, each belonging to 

specific families, and includes the number of samples available 

for each malware family. The dataset covers a total of 29710 

samples across various malware types and their associated 

families. It comprises a wide range of malicious software, 

including viruses (Krepper.30760), worms (Yuner.A), 

backdoors (Agent, 1024 samples), trojan downloaders 

(Tugaspay.A, 3652 samples), and trojan removers (Renos, 

1880 samples), among other types of malwares. It also includes 

samples from rogue malware, trojans, virtools, and trojan 

dropper families, with different numbers of samples from each 

family adding diversity to the collection. Datasets like this one 

are crucial to cybersecurity researchers because they allow for 

the testing and refinement of machine learning models that can 

distinguish between and categorize malware families. 

Nevertheless, it is crucial to address class imbalance 

appropriately during model training and assessment to 

guarantee accurate and robust classification results, since the 

dataset's potential might be affected by an uneven distribution 

of samples across different malware families.  
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3.2. PROPOSED ALGORITHM 

Input: 

    PE_section: List of PE section features (ps1, ps2, ..., 

psm) 

    PE_import: List of PE import features (pi1, pi2, ..., pin) 

    PE_API: List of PE API features (pa1, pa2, ..., pap) 

    PE_image: List of PE im features (pim1, pim2, ..., pimq) 

 

Output: 

    Output predictions O1 representing the probability of the 

sample being classified as Malware or Benign 

Feature Integration: 

    Combine PE features (sections, imports, APIs) to create a 

fusion feature = {F1, F2, ..., Ft}, where m + n + p + q = t. 

Preprocessing: 

    Preprocess fusion_feature to obtain a pre-processed 

feature set: {FS1, FS2, ..., FSt}. 

   end for 

4. EXPERIMENTAL RESULTS 

Different algorithms, including Random Forest, XGBoost, 

Decision Tree, and KNN, were utilised in order to evaluate a 

multi-view feature fusion strategy for successful malware 

detection. In particular, the use of the top 40 characteristics in 

conjunction with Random Forest demonstrated the best 

accuracy, which was 97.31%.  

The Dynamic Analysis, on the other hand, comprised 

evaluating several feature subsets (top 10, 20, 30, 40, 50, 60, 

and 70) with the same algorithms. The results showed that 

using Random Forest with the top 40 features resulted in the 

greatest accuracy of 99.11%. The Hybrid Analysis, which 

combines forty static characteristics with sixty dynamic 

features, displayed remarkable accuracy rates: 99.65% for 

Random Forest, 99.89% for XGBoost, 99.10% for Decision 

Tree, and 93.84% for KNN algorithms. 

Table.2. Static Analysis with feature numbers 

and algorithms 

Featur

e_no. 

Random

_forest 

XGBoost DecisionT

ree 

KNN 

10 96.5433 95.7507 95.5085 93.5270 

20 96.8516 96.12505 95.9709 93.8132 

30 97.2258 96.67547 96.0149 93.7912 

40 97.3139 97.09379 96.2351 93.8353 

50 97.1818 97.00572 96.367 93.8132 

The effectiveness of the feature fusion methodology was 

demonstrated by the fact that the multi-feature approach was 

found to be superior than the use of a single feature through 

comparison. With regard to the specifics, it attained an accuracy of 

97.31% for static analysis, 99.11% for dynamic analysis, and an 

astounding 99.64% for hybrid analysis. Despite the fact that these 

accomplishments are being highlighted, it is essential to realise 

both the advantages and the limits of these techniques in the 

categorization of various types of malware. The multi-feature 

method displays significant advances in accuracy; yet, the field 

may still encounter obstacles in specific cases, such as by 

employing evasion strategies that are used by malevolent actors. 

Table.3. Dynamic Analysis with feature 

numbers and algorithms 

Featur

e_no. 

Random

_forest 

XGBoost DecisionT

ree 

KNN 

10 96.52135 95.9709 96.2791 94.2536 

20 98.5909 98.2826 97.8643 95.8388 

30 98.7010 98.9431 98.2386 90.2245 

40 99.0973 99.0752 98.4588 90.8190 

50 99.0312 99.0312 98.4368 90.4007 

60 98.8331 99.1193 98.5689 90.2906 

70 99.0092 99.0752 98.3927 90.2906 

Nevertheless, this exhaustive study demonstrates the 

possibility and usefulness of employing a wide variety of 

characteristics and models for the purpose of improving 

malware categorization.  

 
Fig.2. Accuracy in static analysis with the number of features 

set selected 

 

Fig.3. Accuracy in dynamic analysis with the number of 

features set selected 

Figure 4 displays the findings of Random Forest, which used 

the top 40 features and reached an accuracy of 97.31%. Figure 5 

illustrates that XGBoost, which used the top 60 features, achieved 

the best accuracy of 99.11% for the dynamic analysis. For hybrid 

analysis, the top 40 static and 60 dynamic features were chosen. 

The Random_forest, XGBoost, DecisionTree, and KNN 

algorithms were found to have an accuracy of 
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99.64773227653016, 99.88991633641568, 99.09731395860855, 

and 93.83531483927786 respectively. When it comes to the 

categorization of malware, the multi-feature method that has been 

offered yields superior results when compared to the use of a 

single feature. As a result, the approach of feature fusion was able 

to reach an accuracy of 97.31% for static analysis and 99.11% for 

dynamic analysis. A hybrid analysis also obtains a 99.64% success 

rate. While taking into consideration the sequential_1 model, the 

number of epochs that were used was 100, and the training 

outcomes revealed a loss of 0.0398 and an accuracy of 0.9868 

percent. An accuracy of 99.18% is supported by the precision 

recall f1-score. The results of the testing with epoch 100 using the 

sequential_4 model with a total of 711,342 reveal that the accuracy 

is 75.17%.. 

5. CONCLUSION 

In conclusion, the multi-view feature fusion technique has a 

significant potential to enhance the accuracy of malware 

classification systems. Methods for classifying malware that 

rely solely on static, dynamic, or behavior-based features have, 

traditionally speaking, been unable to capture the entire 

complexity of malware, which has resulted in findings that are 

less than optimal. Experimental findings that utilised the 

Random Forest, XGBoost, Decision Tree, and KNN algorithms 

demonstrated notable successes. These algorithms were utilised 

in the experiments. Utilisation of the top forty characteristics 

resulted in an accuracy rate of 99.11% for dynamic analysis 

and a rate of 97.31% for static analysis. A hybrid analysis that 

merged forty static features with sixty dynamic features 

resulted in an accuracy rate of 99.64%. The fact that these 

results exhibit considerable increases in classification accuracy 

across a variety of trials demonstrates that the strategy of 

feature fusion is more successful than applying individual 

characteristics separately. It is essential to make use of Deep 

Learning or Machine Learning models that are capable of 

overcoming evasion strategies in order to make malware 

detection systems more resilient. This is because malicious 

actors may change binary files in order to protect themselves 

from detection. It is necessary to do further research and make 

significant advancements in the field of model construction in 

order to combat emerging threats and improve the overall 

efficiency of classified malware techniques. 

In the future, the classification of malware will undergo 

substantial improvements in a number of significant elements. 

We could discover ways to increase the interpretability of 

models, examine more complicated deep learning architectures, 

fortify machine learning models against adversarial assaults, 

and boost feature engineering in order to give more informative 

and robust feature sets. These are just some of the potential 

outcomes. For the efficient processing of large datasets and the 

detection of threats in real time, scalability and breakthroughs 

in unsupervised learning methods are absolutely necessary. The 

protection of user privacy, the improvement of behavioural 

analysis, and the promotion of collaborative defensive systems 

are all essential components for the comprehensive 

identification of malware. It is necessary to develop and 

maintain datasets on a consistent basis in order to keep things 

moving ahead and to ensure that future malware classification 

algorithms are robust. In the event that these concern areas are 

addressed, the capability of the field to combat evolving cyber 

threats will be significantly improved. 
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