
ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7321

MALWARE CLASSIFICATION WITH MACHINE LEARNING USING MULTI VIEW

FEATURE SELECTION AND FUSION APPROACH

Pushpendra Dwivedi, C. S. Raghuvanshi and Hari Om Sharan

Department of Computer Science & Engineering, Rama University, Kanpur 209217, Uttar Pradesh, INDIA

E-mail: pushpendradwivedi10@gmail.com

Abstract: Malware continues to pose a persistent and dynamic threat

in the digital realm, demanding innovative detection and classification

strategies. This study emphasizes the importance of feature fusion,

which integrates diverse attributes from multiple sources to capture

both static and dynamic aspects of malware comprehensively.

Conventional single-feature approaches exhibit precision limitations,

driving the exploration of multiple characteristics for fusion and the

adoption of a unified learning algorithm for malware family

classification. The research methodology involves meticulous feature

extraction, followed by the application of KNN, XGBoost,

DecisionTree, and random forest algorithms for classification,

leveraging the most critical features. Experimental findings

demonstrate a significant enhancement in classification accuracy

compared to traditional methods, effectively reducing false positives.

Fusion techniques enhance malware classification accuracy by 99.11%

with dynamic features, 97.31% with static features, and 99.88% with

hybrid analysis, surpassing conventional methodologies.

Keywords: machine learning, malware classification, feature fusion,

feature selection, PE files

1. INTRODUCTION

A major concern in cybersecurity nowadays is effective

malware categorization and detection because of the worrying

rise in malware threats in the digital sphere. Cybercriminals are

always coming up with new strategies to use their malicious

software to deceive computer systems, networks, and the data

that is contained therein. In response to this worry, malware

analysis has been the topic of ongoing innovation. Examining

the sequence of system API calls is one of the most popular

methods for keeping an eye on programme activities. This is so

that everything the application performs, including file and

network access, is recorded. The names of the API and its

parameters are necessary for each API call in the series [1]. An

API request's parameters, which are always given as

name=value pairs, can contain any number between 0 and

many. A variety of feature engineering methods are available

for handling behavior-related data processing. We may obtain

the N most common n-gram characteristics (where n = 1, 2) of

the API name, assuming it is a string. Feature extraction is a

difficult operation as parameters might be many various types,

such as texts, numbers, locations, and more. The two main

techniques that may be applied to learn more about the features

of malware are static and dynamic malware investigation. The

use of static features makes it possible to extract important

information about the file's compositional details. PE-section,

import, header, byte, and Opcode histograms are commonly

used for static malware analysis [2].

But given these traits, it's likely that important information

on cutting-edge malware strategies—like obfuscation,

metamorphism, mutation, and oligomorphic code—that are

used to evade detection will be left out. Dynamic malware

analysis may record the behaviours and activities of the

executable file, which can then be utilised to identify and

classify malware [3]. The feature set that is most commonly

used in dynamic malware analysis is the API call sequencing

feature. This is because it not only documents the binary's

interactions with various system instances, but it also discloses

the intent behind the virus's creation. Additionally, in order to

more precisely identify weaknesses and boost efficiency,

researchers used a technique called hybrid analysis, which

leveraged an aggregation of static and dynamic features [4].

Deep learning has garnered a lot of attention and shown

promise in the detection and classification of malware due to

its ability to learn complex representations and patterns from

complex data. Without the need for created features, deep

learning models, such as CNNs and RNNs, may automatically

learn hierarchical representations from raw data (such as

opcode sequences, byte-level information, or binary code) [5].

This ability to automatically extract features from data has

made it feasible to capture intricate viral patterns. Deep

learning models may assess software behavioural patterns by

examining series of system calls, API requests, or network

data. Recurrent neural networks, in particular Long Short-Term

Memory (LSTM) networks, have been used in malware

analysis and classification utilising behavioural sequences.

Deep learning techniques can combine static (file-based) and

dynamic (behavior-based) analysis for comprehensive malware

identification. Combining traits collected from static and

dynamic analysis can lead to improved classification accuracy

[6]. File headers and byte sequences are examples of static

analysis features, whereas system actions and API requests are

examples of dynamic analysis features. Researchers have

looked into the use of deep learning algorithms to recognise

malware and block its evasion strategies. Robustness

techniques and adversarial training have been used to create

models that are less likely to escape. Ensemble methods that

combine domain adaptability, transfer learning techniques (pre-

trained models), and deep learning architectures have been

used in malware research. These techniques leverage

information from large datasets or related fields to improve

classification accuracy in scenarios where labelled data is

scarce [7]. Integrating feature fusion approaches into machine

learning frameworks is an intriguing and potentially profitable

direction for malware classification [8]. This approach

considers the complexity and diversity of malware's behaviours

and characteristics. Feature fusion recognises that complete

malware classification requires an integrated perspective

integrating several properties from various sources, including

mailto:pushpendradwivedi10@gmail.com

ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7322

behavioural traits, network traffic patterns, and file-based

features. Combining these several traits provides a more

comprehensive picture of malicious software, which improves

classification models' resilience and accuracy [9]. Recent

experiments with feature fusion and machine learning have

shown promising improvements in the accuracy of malware

categorization. These techniques raise detection rates while

being impervious to malware evasive strategies. This work

investigates the combination of cutting-edge machine learning

models and feature fusion techniques, adding to the ongoing

efforts to fortify cybersecurity and protect digital environments

against new threats:

In this study, we combine feature fusion and machine

learning to examine the latest advancements and trends in

malware classification. Here's an explanation of feature fusion,

machine learning, and malware classification. In this study, we

explore how these approaches tackle contemporary

cybersecurity concerns and offer experimental results.

Researchers, cybersecurity professionals, and businesses

searching for tactics and fixes to counter new malware threats

may find great value in this study.

2. RELATED WORKS

Malware samples are analysed to find the characteristics

that may be used to determine them. Machine learning

approaches [10] state that as malware becomes more complex

throughout its lifespan, understanding cryptic malware

protection has become essential to malware detection.

Furthermore, two forms of malware analysis are still often

employed in the process of detecting potentially harmful apps

[11]. ML-based malware detection algorithms analyse data

through feature extraction. Machine learning techniques were

employed using these characteristics (API calls, Assembly, and

Binary) [12] to categorise malware.

In the topic of malware classification, several methods for

recognising and categorising malware have been developed.

Conventional approaches that rely on patterns, such signature-

based detection, can fall short when faced with new and

unexpected threats [13]. When employing heuristic-based

algorithms to identify potential threats based on behavioural

patterns, there is a potential for false alarms. The use of

supervised, unsupervised, and deep learning techniques in

machine learning to evaluate massive malware data sets and

differentiate between safe and hazardous software has resulted

in a significant shift. Moreover, behavioural analysis, which is

done in controlled environments, can be used to identify

dangerous behaviours [14]. Some advanced techniques use

machine learning, behavioural analysis, heuristics, and

signatures to create hybrid models that combine several

detection techniques for increased accuracy [15]. Using

dynamic analysis, which involves seeing malware in operation

in a controlled environment in real-time, one may understand

how malware impacts systems. Additionally, combining

several data sets from various sources is a potent technique that

offers a thorough picture of malware activities [16]. As the

cybersecurity landscape shifts, ongoing research attempts to

enhance and modify these strategies to address the always

evolving cyber threats.

In contrast to conventional malware, which was only run

once, current malware is more specialised, stealthy, and

persistent [17]. Conventional malware was broad and easily

accessible. Since zero-day infections make use of more recent

vulnerabilities that have not yet been made public, they are

challenging to identify [18]. Artificial Intelligence, machine

learning, and deep learning techniques are being used in many

computer science domains, from natural language processing to

virus detection techniques. After researching Android malware,

author [19] is currently developing a multi-feature consensus-

based decision fusion adaptive identification component to use

this malware (MCDF). Srndic et al. [20] used machine learning

approaches in combination with static analysis to categorise

malware samples. In this study, two distinct file formats were

examined. Resource-draining executables are increasingly

being included into PDF and SWF files by malware writers. In

this study, 40,000 SWFs and 440,000 PDFs were examined.

The design of this technology allowed for the detection of

harmful code in Adobe PDF and Flash (SWF) files.

Signatures play a major role in an anti-virus or malware

detection system's ability to recognise unusual activities. This

method looks for certain viral patterns in a huge sample of

signatures. The signature-based approach looks for

disturbances by consulting a list of known assaults that has

been previously provided. This configuration may detect

malware in a wide range of applications, but in order to stay

effective, the designated signature database has to be updated

on a regular basis. Because adaptable malware is continually

growing, it is therefore less successful in detecting hazardous

exercises when utilising the signature-based technique [21].

The anti-virus provider uses heuristic methods that are able to

recognise harmful software and handle their signatures [22].

Static feature extraction is done with feature extraction

programmes like HashGenerator, PsStudio, PeView, and

PeExplorer. Tools for disassembling code, such as Lida,

Cpstone, and IDA Pro, are used to do static analysis at the code

level. Static malware features such as Opcode [15], String [23]

(‘APIcallname’, ‘mytime’, ‘kernal32’), and N-gram [23]

(‘mail’, ‘ili,’ and ‘ftw’)('PUSH, ADD, SUB, MOV,'), hash

values ('e5dadf6524624f79c3127e247f04b548'), PE For

analysis, the header data [24] (field value, checksum, size, and

symbol) is extracted. It may be possible to simplify the

signature-based identification problem to a straightforward

string matching problem. This basically means that it keeps

searching over a large string collection for a pattern or

substring. Approximately 45–75 percent of the computational

time is devoted to this process alone [25]. In string matching,

two of the most used algorithms are Aho-Corasick and Boyer-

Moore. Even with the prevalence of unpacking techniques, de-

obfuscating every malware component is a challenging task.

 A malware detection approach for mobile phones based on

an artificial immune system was proposed by WU Bin et al.

(2015) [26]. To improve the accuracy of detection, a clone and

mutation approach is used in addition to different detectors. It

was also demonstrated that current features are particular

instances of fuzzy token similarity. Token-based resemblance

and character-based resemblance were joined to form a new

ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7323

similarity matrix. A signature-based method was created by

Jiannan Wang et al. (2011) [27] to address the fuzzy-token

similarity joins issue. It is discovered that the token-sensitive

method performs better than other sig-nature strategies already

in use. As an addition to the existing signature methods for edit

distance, edit similarity was added. ScaleMalNet is a deep

learning system for identifying zero-day malware that makes

use of image processing, dynamic analysis, and static data, as

recommended by the study in [8]. [28] proposed a strategy

based on behavioural traits to define malware. They collect

API call traces from malware samples in a controlled virtual

environment and perform dynamic inspection on a dataset of

typically early malware in order to have the suggested model

eliminated. After the traces are analysed, more sophisticated

features, or "actions," are produced. According to

Arivudainambi, Varun, et al.'s methodologies [29], network

traffic analysis may be used to identify malicious activity.

Better anti-network traffic methodological strategies need the

use of PCA. The suggested technique was evaluated by

executing 1,000 malicious files in many sandboxes, including

as Cuckoo, Limon, and Noriben. There was a 99 percent

success rate in detecting malware using this strategy.

Anti-virus or malware detection systems rely heavily on

signatures to identify anomalous activity. This approach looks

for certain patterns in a vast collection of signatures in order to

detect infections. The signature-based method looks for

disturbances using a previously specified list of known attacks.

The setup can identify malware in a variety of situations, but in

order to keep functioning, it needs regular updates to the

signature database that is given. The signature-based method's

effectiveness in identifying harmful activities is restricted since

adaptable malware is constantly evolving [21]. To properly

identify malicious software and preserve signatures, the anti-

virus provider use metaheuristic approaches [22].

programmes for extracting static features, such

HashGenerator, PsStudio, PeExplorer, and PeView.

Disassembler tools like Lida, Cpstone, and IDA Pro can be

used for code-level static analysis. Some static elements, such

N-grams, strings, opcodes, hash values, and PE header

information, are retrieved in order to analyse the virus. If string

matching turns out to be too challenging, signature-based

identification can end up being quite simple. In real terms, this

implies that it looks for patterns or substrings by sifting

through a sizable string collection. Between 45 and 75 percent

of the processing time is accounted for by this single procedure

[25]. Well-known string-matching algorithms are Boyer-Moore

and Aho-Corasick. Even with a number of unpacking

techniques available, decrypting every piece of malware is still

a difficult task. A malware classifier that could handle

polymorphic patterns was developed by Narayanan et al.

(2016) [30] using supervised machine learning techniques.

There are two methods in which anomalies are incorporated

into behavior-based techniques. An anomaly is a malfunction

brought on by malicious files. Files that exhibit unusual

behaviour that deviates from the behaviour of regular files

stored are considered malicious.

This section goes over behavioral-based malware detection

techniques in depth. The use of sophisticated techniques to

detect malware is mentioned. Bailey et al. (2007) [31] proposed

one such technique that captured the API calls made by

malware. In order to maintain appropriate precision while

accounting for both dynamic and static inquiry points of

interest, Eskandari et al. (2013) [32] introduced a novel hybrid

approach called HDM-Analyzer. As a result, HDM-Analyzer is

able to predict that there is minimal performance deterioration

because the majority of the core leadership is based on actual

data. Sheen and colleagues (2015) [19] created MCDF. By

integrating the classifiers' choices using the collective

technique based on the probability hypothesis, which is utilised

to form a group of classifiers, malicious record characteristics

such as the consent-based features and API call-based features

are examined to deliver a better finding.

Table.1. Tools used for static and dynamic

analysis

Static Analysis Tools Dynamic Analysis Tools

IDA Pro (dissembler) ProcMon (logs lve system activity)

Ghidra (dissembler) PeStudio (Windows executable
analyzer)

PeView (PE header

information)
Process Hacker (Gathering

information of process)

UPX Wireshark (packet analysis tool)
YARA (string matching) TCPdump (TCP/IP packet

analyser)

x64dbg (reverse
engineering)

Regshot (snapshot of registry
related files)

HxD VmWare/VitualBox (virtual
machine)

PE-bear Comodo IMA (malware analysis
sandbox)

PeStudio (analyzing
executables)

Cuckoo Sandbox

IOCFinder RegMon (registry monitoring)

Utilizing supervised machine learning techniques,

Narayanan et al. (2016) [30] built a malware classifier that was

able to handle polymorphic. Ming et al. (2017) [6] have

developed a substitution attack that affects behavior-based

requirements to cover similar behaviors. The main attack

approach is to replace a graph of system call de-pendency with

its semantically equivalent variants so that the comparable

malware test's secret unique family becomes characteristically

distinctive. Malware researchers should thus devote more time

and effort to the re-examination of identical samples that may

have recently been studied, as a result of this.

Deep learning is just one method within the larger field of

machine learning [33]. It can be trained with data that is neither

organized nor tagged. It collects data, processes it, and then

forms conclusions based on patterns it finds about itself; this is

quite similar to how the human brain works. Deep learning

relies on neurons as its foundation [8].

3. PROPOSED APPROACH

For accurate malware detection, using the relevant

algorithm is important. When estimating supervised learning

models based on feature engineering, the prior top performer is

ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7324

Support Vector Machines (SVM) which is used [34]. The

algorithmic conversions for machine learning models entail

initializing and training each classifier and making predictions

accordingly. For Random Forest (RF), the scikit-learn library is

employed to instantiate a Random Forest Classifier, which is

then trained on the training data. Predictions are generated

using the trained model. XGBoost implementation involves

converting the data into DMatrix format, setting appropriate

parameters for multi-class classification, and training the model

using the xgboost.train function. K-Nearest Neighbors (KNN)

classifier is instantiated using KNeighborsClassifier, trained on

the training data, and used to predict labels for the test data. For

Decision Tree (DT), a DecisionTreeClassifier is initialized,

trained on the training data, and utilized for generating

predictions. These implementations enable the application of

Random Forest, XGBoost, KNN, and Decision Tree algorithms

for classification tasks, providing versatility in modeling

approaches for different datasets and problem domains. After a

thorough study, the machine learning model was selected

because it performed exceptionally well with many feature sets

obtained from different sources, including static analysis,

dynamic analysis, and binary-to-image conversion techniques.

To demonstrate how effective feature fusion is in enhancing

classification accuracy, the chosen model is applied to the

evaluation of the fused combination dataset for malware

classification. Figure 1 shows the propose approach of malware

classification The effectiveness of feature fusion in improving

malware classification accuracy is demonstrated in this all-

encompassing method, which uses ML models, optimizes

hyperparameters, evaluates performance across different

feature sets, and finally uses a selected model for both the

fused feature set and individual feature sets.

Fig.1. Proposed classification scheme

3.1. DATA SET

The dataset is structured to assist in the classification and

analysis of different malware types based on their families. It

comprises a diverse set of malware types, each belonging to

specific families, and includes the number of samples available

for each malware family. The dataset covers a total of 29710

samples across various malware types and their associated

families. It comprises a wide range of malicious software,

including viruses (Krepper.30760), worms (Yuner.A),

backdoors (Agent, 1024 samples), trojan downloaders

(Tugaspay.A, 3652 samples), and trojan removers (Renos,

1880 samples), among other types of malwares. It also includes

samples from rogue malware, trojans, virtools, and trojan

dropper families, with different numbers of samples from each

family adding diversity to the collection. Datasets like this one

are crucial to cybersecurity researchers because they allow for

the testing and refinement of machine learning models that can

distinguish between and categorize malware families.

Nevertheless, it is crucial to address class imbalance

appropriately during model training and assessment to

guarantee accurate and robust classification results, since the

dataset's potential might be affected by an uneven distribution

of samples across different malware families.

ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7325

3.2. PROPOSED ALGORITHM

Input:

 PE_section: List of PE section features (ps1, ps2, ...,

psm)

 PE_import: List of PE import features (pi1, pi2, ..., pin)

 PE_API: List of PE API features (pa1, pa2, ..., pap)

 PE_image: List of PE im features (pim1, pim2, ..., pimq)

Output:

 Output predictions O1 representing the probability of the

sample being classified as Malware or Benign

Feature Integration:

 Combine PE features (sections, imports, APIs) to create a

fusion feature = {F1, F2, ..., Ft}, where m + n + p + q = t.

Preprocessing:

 Preprocess fusion_feature to obtain a pre-processed

feature set: {FS1, FS2, ..., FSt}.

 end for

4. EXPERIMENTAL RESULTS

Different algorithms, including Random Forest, XGBoost,

Decision Tree, and KNN, were utilised in order to evaluate a

multi-view feature fusion strategy for successful malware

detection. In particular, the use of the top 40 characteristics in

conjunction with Random Forest demonstrated the best

accuracy, which was 97.31%.

The Dynamic Analysis, on the other hand, comprised

evaluating several feature subsets (top 10, 20, 30, 40, 50, 60,

and 70) with the same algorithms. The results showed that

using Random Forest with the top 40 features resulted in the

greatest accuracy of 99.11%. The Hybrid Analysis, which

combines forty static characteristics with sixty dynamic

features, displayed remarkable accuracy rates: 99.65% for

Random Forest, 99.89% for XGBoost, 99.10% for Decision

Tree, and 93.84% for KNN algorithms.

Table.2. Static Analysis with feature numbers

and algorithms

Featur

e_no.

Random

_forest

XGBoost DecisionT

ree

KNN

10 96.5433 95.7507 95.5085 93.5270

20 96.8516 96.12505 95.9709 93.8132

30 97.2258 96.67547 96.0149 93.7912

40 97.3139 97.09379 96.2351 93.8353

50 97.1818 97.00572 96.367 93.8132

The effectiveness of the feature fusion methodology was

demonstrated by the fact that the multi-feature approach was

found to be superior than the use of a single feature through

comparison. With regard to the specifics, it attained an accuracy of

97.31% for static analysis, 99.11% for dynamic analysis, and an

astounding 99.64% for hybrid analysis. Despite the fact that these

accomplishments are being highlighted, it is essential to realise

both the advantages and the limits of these techniques in the

categorization of various types of malware. The multi-feature

method displays significant advances in accuracy; yet, the field

may still encounter obstacles in specific cases, such as by

employing evasion strategies that are used by malevolent actors.

Table.3. Dynamic Analysis with feature

numbers and algorithms

Featur

e_no.

Random

_forest

XGBoost DecisionT

ree

KNN

10 96.52135 95.9709 96.2791 94.2536

20 98.5909 98.2826 97.8643 95.8388

30 98.7010 98.9431 98.2386 90.2245

40 99.0973 99.0752 98.4588 90.8190

50 99.0312 99.0312 98.4368 90.4007

60 98.8331 99.1193 98.5689 90.2906

70 99.0092 99.0752 98.3927 90.2906

Nevertheless, this exhaustive study demonstrates the

possibility and usefulness of employing a wide variety of

characteristics and models for the purpose of improving

malware categorization.

Fig.2. Accuracy in static analysis with the number of features

set selected

Fig.3. Accuracy in dynamic analysis with the number of

features set selected

Figure 4 displays the findings of Random Forest, which used

the top 40 features and reached an accuracy of 97.31%. Figure 5

illustrates that XGBoost, which used the top 60 features, achieved

the best accuracy of 99.11% for the dynamic analysis. For hybrid

analysis, the top 40 static and 60 dynamic features were chosen.

The Random_forest, XGBoost, DecisionTree, and KNN

algorithms were found to have an accuracy of

ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7326

99.64773227653016, 99.88991633641568, 99.09731395860855,

and 93.83531483927786 respectively. When it comes to the

categorization of malware, the multi-feature method that has been

offered yields superior results when compared to the use of a

single feature. As a result, the approach of feature fusion was able

to reach an accuracy of 97.31% for static analysis and 99.11% for

dynamic analysis. A hybrid analysis also obtains a 99.64% success

rate. While taking into consideration the sequential_1 model, the

number of epochs that were used was 100, and the training

outcomes revealed a loss of 0.0398 and an accuracy of 0.9868

percent. An accuracy of 99.18% is supported by the precision

recall f1-score. The results of the testing with epoch 100 using the

sequential_4 model with a total of 711,342 reveal that the accuracy

is 75.17%..

5. CONCLUSION

In conclusion, the multi-view feature fusion technique has a

significant potential to enhance the accuracy of malware

classification systems. Methods for classifying malware that

rely solely on static, dynamic, or behavior-based features have,

traditionally speaking, been unable to capture the entire

complexity of malware, which has resulted in findings that are

less than optimal. Experimental findings that utilised the

Random Forest, XGBoost, Decision Tree, and KNN algorithms

demonstrated notable successes. These algorithms were utilised

in the experiments. Utilisation of the top forty characteristics

resulted in an accuracy rate of 99.11% for dynamic analysis

and a rate of 97.31% for static analysis. A hybrid analysis that

merged forty static features with sixty dynamic features

resulted in an accuracy rate of 99.64%. The fact that these

results exhibit considerable increases in classification accuracy

across a variety of trials demonstrates that the strategy of

feature fusion is more successful than applying individual

characteristics separately. It is essential to make use of Deep

Learning or Machine Learning models that are capable of

overcoming evasion strategies in order to make malware

detection systems more resilient. This is because malicious

actors may change binary files in order to protect themselves

from detection. It is necessary to do further research and make

significant advancements in the field of model construction in

order to combat emerging threats and improve the overall

efficiency of classified malware techniques.

In the future, the classification of malware will undergo

substantial improvements in a number of significant elements.

We could discover ways to increase the interpretability of

models, examine more complicated deep learning architectures,

fortify machine learning models against adversarial assaults,

and boost feature engineering in order to give more informative

and robust feature sets. These are just some of the potential

outcomes. For the efficient processing of large datasets and the

detection of threats in real time, scalability and breakthroughs

in unsupervised learning methods are absolutely necessary. The

protection of user privacy, the improvement of behavioural

analysis, and the promotion of collaborative defensive systems

are all essential components for the comprehensive

identification of malware. It is necessary to develop and

maintain datasets on a consistent basis in order to keep things

moving ahead and to ensure that future malware classification

algorithms are robust. In the event that these concern areas are

addressed, the capability of the field to combat evolving cyber

threats will be significantly improved.

ACKNOWLEDGEMENT

I would like to express our sincere gratitude to Dr. C. S.

Raghuvanshi and Dr. Hari Om Sharan for their unwavering

support and invaluable contributions to this research study.

Their equal dedication and guidance in all aspects of the

research have been instrumental in shaping the course of our

work.

I also extend our thanks to all the authors, including Dr. C.

S. Raghuvanshi and Dr. Hari Om Sharan, for their collective

efforts in thoroughly reviewing and providing valuable insights

that have significantly enriched the content of this manuscript.

The collaborative spirit and unanimous agreement on the final

version of the paper underscore the strength of our teamwork.

Their expertise, mentorship, and commitment have been

pivotal in the successful completion of this research, and we

are truly grateful for their enduring support.

REFERENCES

[1] A A. P. Namanya, A. Cullen, I. U. Awan, and J. P. Disso,

“The World of Malware: An Overview,” Proceedings - 2018

IEEE 6th International Conference on Future Internet of Things

and Cloud, FiCloud 2018, pp. 420–427, 2018, doi:

10.1109/FiCloud.2018.00067.

[2] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, and L. Mao,

“MalDAE: Detecting and explaining malware based on

correlation and fusion of static and dynamic characteristics,”

Computers and Security, vol. 83, pp. 208–233, 2019, doi:

10.1016/j.cose.2019.02.007.

[3] A. Namavar Jahromi et al., “An improved two-hidden-layer

extreme learning machine for malware hunting,” Comput

Secur, vol. 89, p. 101655, 2020, doi:

10.1016/j.cose.2019.101655.

[4] M. Rabbani, Y. L. Wang, R. Khoshkangini, H. Jelodar, R.

Zhao, and P. Hu, “A hybrid machine learning approach for

malicious behaviour detection and recognition in cloud

computing,” Journal of Network and Computer Applications,

vol. 151, p. 102507, 2020, doi: 10.1016/j.jnca.2019.102507.

[5] Q. Le, O. Boydell, B. Mac Namee, and M. Scanlon, “Deep

learning at the shallow end: Malware classification for non-

domain experts,” Proceedings of the Digital Forensic Research

Conference, DFRWS 2018 USA, pp. S118–S126, 2018, doi:

10.1016/j.diin.2018.04.024.

[6] J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao,

“Impeding behavior-based malware analysis via replacement

attacks to malware specifications,” Journal of Computer

Virology and Hacking Techniques, vol. 13, no. 3, pp. 193–207,

2017, doi: 10.1007/s11416-016-0281-3.

[7] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R.

Damaševičius, “An efficient densenet‐based deep learning

model for Malware detection,” Entropy, vol. 23, no. 3, pp. 1–

23, 2021, doi: 10.3390/e23030344.

[8] R. Vinayakumar, M. Alazab, K. P. Soman, P.

ResMilitaris,vol.13,n°2 ISSN: 2265-6294 Spring (2023)

 7327

Poornachandran, and S. Venkatraman, “Robust Intelligent

Malware De-tection Using Deep Learning,” IEEE Access, vol.

7, pp. 46717–46738, 2019, doi:

10.1109/ACCESS.2019.2906934.

[9] Y. Ding, J. Hu, W. Xu, and X. Zhang, “A DEEP

FEATURE FUSION METHOD FOR ANDROID MALWARE

DETEC-TION,” 2019 International Conference on Machine

Learning and Cybernetics (ICMLC), pp. 1–6.

[10] A. Souri and R. Hosseini, “A state-of-the-art survey of

malware detection approaches using data mining techniques,”

Human-centric Computing and Information Sciences, vol. 8,

no. 1. 2018. doi: 10.1186/s13673-018-0125-x.

[11] M. Ijaz, M. H. Durad, and M. Ismail, “Static and Dynamic

Malware Analysis Using Machine Learning,” Proceedings of

2019 16th International Bhurban Conference on Applied

Sciences and Technology, IBCAST 2019, pp. 687–691, 2019,

doi: 10.1109/IBCAST.2019.8667136.

[12] M. Ashik et al., “Detection of malicious software by

analyzing distinct artifacts using machine learning and deep

learning algorithms,” Electronics (Switzerland), vol. 10, no. 14,

pp. 1–28, 2021, doi: 10.3390/electronics10141694.

[13] A. Abusitta, M. Q. Li, and B. C. M. Fung, “Journal of

Information Security and Applications Malware classification

and composition analysis : A survey of recent developments,”

Journal of Information Security and Applications, vol. 59, no.

April, p. 102828, 2021, doi: 10.1016/j.jisa.2021.102828.

[14] S. Dambra, A. Vitale, J. Caballero, and D. Balzarotti,

“Decoding the Secrets of Machine Learning in Windows

Malware Classification : A Deep Dive into Datasets , Features ,

and Model Performance”.

[15] J. Sexton, C. Storlie, and B. Anderson, “Subroutine based

detection of APT malware,” Journal of Computer Virology and

Hacking Techniques, vol. 12, no. 4, pp. 225–233, 2016, doi:

10.1007/s11416-015-0258-7.

[16] P. Dwivedi and H. Sharan, “Analysis and Detection of

Evolutionary Malware: A Review,” Int J Comput Appl, vol.

174, no. 20, pp. 42–45, 2021, doi: 10.5120/ijca2021921005.

[17] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis

and Classification: A Survey,” Journal of Information Security,

vol. 05, no. 02, pp. 56–64, 2014, doi: 10.4236/jis.2014.52006.

[18] R. Kaur and M. Singh, “Hybrid Real-time Zero-day

Malware Analysis and Reporting System,” International

Journal of Information Technology and Computer Science, vol.

8, no. 4, pp. 63–73, 2016, doi: 10.5815/ijitcs.2016.04.08.

[19] S. Sheen, R. Anitha, and V. Natarajan, “Android based

malware detection using a multifeature collaborative decision

fusion approach,” Neurocomputing, vol. 151, no. P2, pp. 905–

912, 2015, doi: 10.1016/j.neucom.2014.10.004.

[20] N. Šrndić and P. Laskov, “Hidost: a static machine-

learning-based detector of malicious files,” EURASIP J Inf

Secur, vol. 2016, no. 1, pp. 1–20, 2016, doi: 10.1186/s13635-

016-0045-0.

[21] M. Al-Asli and T. A. Ghaleb, “Review of signature-based

techniques in antivirus products,” 2019 International Con-

ference on Computer and Information Sciences, ICCIS 2019,

pp. 1–6, 2019, doi: 10.1109/ICCISci.2019.8716381.

[22] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A

Survey on malware analysis and mitigation techniques,”

Comput Sci Rev, vol. 32, pp. 1–23, 2019, doi:

10.1016/j.cosrev.2019.01.002.

[23] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and

A. K. Sangaiah, “Classification of ransomware families with

machine learning based on N-gram of opcodes,” Future

Generation Computer Systems, vol. 90, pp. 211–221, 2019,

doi: 10.1016/j.future.2018.07.052.

[24] features and public APT reports,” Lecture Notes in

Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 10332 LNCS, pp. 288–305, 2017, doi: 10.1007/978-3-319-

60080-2_21.

[25] G. Laurenza, L. Aniello, R. Lazzeretti, and R. Baldoni,

“Malware triage based on static.

[26] Y.-H. Choi, M.-Y. Jung, and S.-W. Seo, “L+1-MWM: A

Fast Pattern Matching Algorithm for High-Speed Packet Fil-

tering,” pp. 2288–2296, 2008, doi: 10.1109/infocom.2008.297.

[27] B. Wu, X. Lin, W. D. Li, T. L. Lu, and D. M. Zhang,

“Smartphone malware detection model based on artificial

immune system in cloud computing,” Beijing Youdian Daxue

Xuebao/Journal of Beijing University of Posts and

Telecommu-nications, vol. 38, no. 4, pp. 33–37, 2015, doi:

10.13190/j.jbupt.2015.04.008.

[28] J. Wang, G. Li, and J. Fe, “Fast-join: An efficient method

for fuzzy token matching based string similarity join,” Proc Int

Conf Data Eng, pp. 458–469, 2011, doi:

10.1109/ICDE.2011.5767865.

[29] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-

based features model for malware detection,” Journal of

Computer Virology and Hacking Techniques, vol. 12, no. 2,

pp. 59–67, 2016, doi: 10.1007/s11416-015-0244-0.

[30] D. Arivudainambi, V. K. Varun, S. C. S., and P. Visu,

“Malware traffic classification using principal component

analysis and artificial neural network for extreme surveillance,”

Comput Commun, vol. 147, no. July, pp. 50–57, 2019, doi:

10.1016/j.comcom.2019.08.003.

[31] B. N. Narayanan, O. Djaneye-Boundjou, and T. M.

Kebede, “Performance analysis of machine learning and

pattern recognition algorithms for Malware classification,”

Proceedings of the IEEE National Aerospace Electronics

Confer-ence, NAECON, vol. 0, pp. 338–342, 2016, doi:

10.1109/NAECON.2016.7856826.

[32] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F.

Jahanian, and J. Nazario, “Automated classification and

analysis of Internet malware,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 4637

LNCS, pp. 178–197, 2007, doi: 10.1007/978-3-540-74320-

0_10.

