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ABSTRACT  

Hybrid models of chemotaxis combine agent-based models of cells with partial differential 

equation models of extracellular chemical signals. In this paper, travelling wave properties of 

hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-

based (individualbased) approach with internal dynamics describing signal transduction. In 

addition to the chemotactic behaviour of the bacteria, the individual-based model also 

includes cell proliferation and death. Cells consume the extracellular nutrient field 

(chemoattractant) which is modelled using a partial differential equation. Mesoscopic and 

macroscopic equations representing the behaviour of the hybrid model are derived and the 

existence of travelling wave solutions for these models is established. It is shown that cell 

proliferation is necessary for the existence of non-transient (stationary) travelling waves in 

hybrid models. Additionally, a numerical comparison between the wave speeds of the 

continuum models and the hybrid models shows good agreement in the case of weak 

chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell 

adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-

field approximations.  

Keywords hybrid model · travelling wave · bacterial chemotaxis 

1 Introduction  

The wavelike spread of cell populations plays a fundamental role in many biological 

processes, including development [24], wound healing [38] and tumour invasion [16]. 

Bacterial populations show similar phenomena, with the pioneering studies of Adler [1] 

confirming the capacity of an E. coli population to form travelling bands via chemotaxis to 

extracellular signals. Mathematically, the extent to which chemotaxis can generate and 

sustain stationary travelling bands has motivated a number of studies, including the Keller-

Segel model of Adler’s experiments which is written in the form of coupled partial 

differential equations (PDEs) [20]. This early model necessitated a biologically unrealistic 

singularity in the chemotactic sensitivity to generate stationary travelling waves: a 

requirement that allows bacteria behind the wave to acquire infinite speeds and to avoid 

“dropping-out”, an effect that leads to gradual dispersal of the band [40, 15].  

This singularity requirement can be circumvented by incorporating other processes. The well 

known Fisher’s equation [14] demonstrates travelling waves in systems coupling diffusion 

with logistic growth terms [14]. Parabolic chemotaxis models with non-singular sensitivities 

but incorporating either logistic [22, 23, 30] or non-logistic [21, 36] growth terms also admit 

travelling wave solutions. Other studies have shown that introduction of more complex 

nutrient terms can give rise to travelling waves, even when growth is absent [34, 35]. An 

experimental system which also included two chemicals – a chemoattractant and a nutrient 

source – was presented in [6, 7], with stationary or transient travelling waves obtained 
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according to t he formulation of the model [5, 40]. Travelling waves in chemotaxis models 

have also been recently studied in [26, 25]; we also note the articles [19] and [37] for a 

review and analysis of travelling waves in PDE-based models. A comparison between 

mesoscopic (hyperbolic) and macroscopic (parabolic) PDEs has been presented in [27]. 

 Relatively little exploration has been conducted into travelling wave formation for 

chemotactic models extending beyond PDE systems, in particular those introducing terms to 

account for the inherent noise of biological systems. One exception is the study of [9], in 

which a multiplicative noise term was introduced into the Keller-Segel model and the 

existence of travelling waves has been demonstrated within this setting. Hybrid models, in 

which an individualbased model for bacterial behaviour is coupled to a continuum description 

of extracellular signals, naturally introduce stochastic effects and will be the focus of the 

present paper. Such a hybrid model was formulated in [15] where it was shown that under 

finite cell speeds only transient travelling waves formed, even with singular chemotactic 

sensitivity. The individual-based model was formulated in terms of the velocity-jump model 

with internal dynamics [12, 13, 41] and, in this paper, we extend the model in [15] to 

incorporate proliferation and death of bacteria. We analyse this system numerically and 

analytically with respect to its travelling wave properties, employing the biologically inspired 

chemotactic sensitivity presented in [40] and a linear growth term. We show that stationary 

travelling waves can be observed even in the absence of chemotaxis, although wave speeds 

are substantially increased in its presence. The organisation of the paper is as follows: the full 

hybrid model is presented in Section 2 along with illustrative simulation results, while the 

corresponding continuum equations are derived under certain assumptions in Section 3; in 

Section 4 these continuum equations are analysed with respect to travelling wave properties; 

in Section 5 where a computational analysis and comparison of the models is presented; 

finally, we discuss our observations in Section 6. 

2 Hybrid model of bacterial chemotaxis 

 In this section we formulate the hybrid model of bacterial chemotaxis which will be 

investigated in this paper. The model is motivated by the behaviour of the bacterium E.coli 

and, in its most general form, includes cell movement, sensing and response to a chemical 

signal, consumption of the chemoattractant, cell proliferation and death. However, for 

analytical tractability, we will also explore simplified hybrid models which exclude some of 

these processes. Bacteria are modelled as agents with internal dynamics that represent the 

signal processing and response of each individual while the extracellular chemical is 

modelled using a PDE to describe its spatio-temporal concentration. The mathematical 

framework and simulation techniques are reviewed in [15]. We consider the model in an 

effectively one-dimensional domain representing a long but narrow tube, similar to the 

experimental set up considered in [1]. 

The motion of E. coli bacteria is controlled through the coordinated rotation of flagella 

distributed over the cell surface [2]. Counterclockwise rotation generates a propulsive bundle 

that results in straight line motion of the bacterium – a so-called “run” [3]. Alternatively, 

clockwise rotation results in the outward flaying of flagella and a “tumble” – rotation with 

insignificant displacement. At the end of each tumble the bacterium chooses a new direction 

of movement, seemingly at random, and returns to the run phase. The lengths of the 

individual phases are independent from each other and distributed exponentially, yet they can 
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be influenced by internal dynamics [2]. Internal dynamics of the E. coli bacteria possess two 

principal features [4]: a quick excitation phase followed by slower adaptation. Specifically, 

changes in the extracellular signal concentration lead to quick excitation of the internal 

metabolism, signified through altered chemical concentrations inside the cell. Following 

excitation the internal concentrations revert slowly to normal in an adaptation process, even 

when the external signal remains at the raised level. 

2.1 Velocity jump model with internal dynamics  

Run-and-tumble dynamics are aptly modelled as a velocity-jump process [31, 12]. We denote 

by Na(t) the number of bacteria (agents) in the system at time t. The current state of the i-th 

individual, i = 1, 2, . . . , Na(t), will be described using its position xi ∈ R, its velocity vi = ±s 

∈ R and a set of internal state variables yi ∈ R m that represent the states of components in 

the intracellular signal transduction network. Here we concentrate on a cartoon version of the 

internal dynamics of bacteria written in terms of two internal variables [32, 12], i.e m = 2. 

Internal variables y (1) and y (2) are governed by the equations 

 

where te is the excitation time, ta is the adaptation time, te ≪ ta and S(x(t), t) is the 

concentration of chemoattractant at the position of the bacterium x(t) at time t. Furthermore, 

bacteria move with the velocity vi = ±s governed through a velocity jump process with a 

turning frequency λ = λ(y) that depends on the internal dynamics. In this paper, we will use 

the biologically motivated nonlinear turning kernel developed in [40]. Hence, the full model 

of one individual over (a small) time step ∆t can be written as: 

 

where λ0 and κ are positive constants. In addition to the behaviour of an individual bacterium 

we define a signaldependent proliferation function h(S) : R + 7→ R. We thereby interpret a 

positive value of h(S) as a proliferation rate, meaning that in the infinitesimal interval [t, t + 

∆t) a bacterium at position x generates an exact copy of itself with probability h(S(x(t), t)) ∆t. 

Similarly, a negative value of h(S) means that the bacterium disappears (dies) with the 

probability −h(S(x(t), t)) ∆t. In this paper, we will use the following form for the proliferation 

rate h(S): 

 

where α and Sc are positive constants. 

2.2 Evolution of the extracellular chemoattractant 
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 For the extracellular signal S(x, t) we formulate a PDE that incorporates diffusion (with 

diffusion constant DS ≥ 0) and signal consumption by bacteria, the latter with signal 

dependent rate k(S) : R + → R +. The equation for S therefore takes the form 

 

For the remainder of the paper we employ a linear form for the consumption function k(S): 

 

where β is a positive constant. 

2.3 Illustrative example  

The hybrid model framework presented in Sections 2.1 and 2.2 includes essential features of 

the more complicated hybrid chemotaxis models formulated in [10, 39]. In this section we 

numerically show that these processes can give rise to travelling waves. For the numerical 

simulation we employ techniques described in [15]. In particular, for the extracellular signal 

S(x, t), this means that the simulation is performed on the one-dimensional domain [0, L] 

with initial condition S(x, 0) = S∞ > 0 and zero-flux boundary conditions. We consider M + 1 

regularly spaced grid points rj = j ∆x, j = 0, . . . , M, where ∆x = L/M and the values of S(xi , 

t) are advanced by a small time step ∆t and a forward Euler update rule: 

 

In the above K : R → R + is the symmetric, normalised and non-negative kernel 

 

where the kernel width σ is a positive real number. Here, K(rj −xi) represents the influence a 

bacterium at position xi has on grid point j. The simulation of the individual bacterium is 

given in the full system (2.2)– (2.6) and complemented by the birth and death processes 

described in Section 2.1, where we use the same time step ∆t as in (2.10). To calculate the 

necessary off-grid values of extracellular signal, we linearly interpolate from the two nearest 

grid points. We further simplify the system (2.2)–(2.6) by exploiting the separate time scales 

for excitation and adaptation (i.e. te ≪ ta): specifically, we assume the update equation (2.5) 

for y (1) is in a quasi-equilibrium, which is identical to the assumption te = 0. The value for y 

(1) can therefore be calculated by 

 

Illustrative results are presented in Figure 1. For this simulation, Na(0) = 104 bacteria were 

initialised at positions xi(0), randomly generated as the absolute value of a Gaussian random 

variable with variance much smaller than the domain length L. The initial velocity (direction 
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of movement) is generated uniformly at random and initial values of the extracellular signal 

and internal variables are taken as 

 

where S∞ = 1. We simulate the system until time Tfinal = 100 and plot both the distribution 

of bacteria and concentration of chemoattractant S in Figure 1(a). We also estimate the wave 

speed as a function of time in Figure 1(b). We clearly see formation of a travelling band of 

bacteria, moving rightwards with average speed v = 0.51 (plotted as the dashed line in Figure 

1(b)). 

Influence of the growth term  

To investigate the influence of the growth term on the existence of travelling waves, we 

simulate the full hybrid model (2.2)–(2.6) and (2.10) including (α = 1) and excluding (α = 0) 

growth and death processes. We use identical parameters to those described above and 

present the results in Figure 2. In Figure 2(a) the position of the wave front (defined as the 

right-most position for which S(x) < 0.9) is compared. The full hybrid system (dashed line) 

generates a straight line, indicating a wave moving with constant speed. While the system 

excluding growth and death (solid line) moves with a similar initial speed, speed is gradually 

lost over time: the shape of n(x, t) at different times for this case is shown in Figure 2(b). We 

clearly see that no true travelling wave forms, with many agents being left far behind the 

wave front, leading to its slowing down. Thus, we can interpret growth and death terms in 

terms of a stabilising role on the wave profile: although not all agents can keep up with the 

wave, new agents are constantly created at the front and the agents that drop out eventually 

die, resulting in a travelling band of agents. 

3 From hybrid models to macroscopic PDEs  

In this section we derive macroscopic PDEs for the spatio-temporal density of bacteria n(x, t) 

at given position x ∈ R and time t ≥ 0. An implicit assumption of the derivation is spatial 

independence of bacteria, which allows formulation 

 

Fig. 1 Numerical solutions of the hybrid chemotaxis model (2.2)–(2.6) and (2.10) and PDE 

System A (3.1)–(3.3).  

(a) Wave form for the hybrid model after time t = 100. Solid line: estimated density of 

bacteria, dashed line: extracellular chemical signal S.  
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(b) Measured speed of travelling wave (solid line). Dashed line denotes the average speed. (c) 

Wave form for PDE system A after time t = 100. Solid line: estimated density of bacteria, 

dashed line: extracellular chemical signal S.  

(d) Measured speed of travelling wave (solid line) for PDE System A. Note that the spike 

near t = 0 is a product of the wave speed calculation method. The dimensionless parameters 

are: α = β = s = 1, Sc = 0.5, S∞ = 1, ∆t = 10−3 , ∆x = 0.25, L = 100, λ0 = 10, κ = 0.01, DS = 

0, ta = 0.1, σ = 0.5. 

of a continuous mesoscopic system. We then use results from [12] to obtain the macroscopic 

equations. To illustrate the successive formulation of models we construct two systems of 

PDEs – denoted System (A) and System (B) – to be referred to in the remainder of the paper. 

3.1 System (A)  

We define the mesoscopic densities p ±(x, y(2), t) for left and right-moving bacteria, 

depending on their position x ∈ R, their internal variable y (2) ∈ R and t ≥ 0. If the signal 

profile S ≡ S(x, t) was uninfluenced by bacteria, densities 

 

80 Fig. 2 Numerical solutions of the hybrid chemotaxis model (2.2)–(2.6) and (2.10) without 

growth and death terms. (a) Comparison of position of wave front over time. Solid line: 

without growth/death (α = 0), dashed line: with growth/death (α = 1). (b) Wave form at 

different times during simulation with α = 0. From left to right: t = 20, 40, 60, 80. Remaining 

parameters as in Figure2. 

p ± would satisfy the following system of hyperbolic P 

 

where λ is defined in (2.4) which, under (2.11), can be simplified to  

The signal dynamics is described by (2.8) 

which can be rewritten in terms of p 

 

3) We denote the system of equations (3.1)–(3.3) as System (A). The system (3.1) (for the 

one-particle distribution) can be derived by integrating the probability distribution 

function p(x1, v1, y1; x2, v2, y2; . . . | S(x, t)) for the many particle system, utilizing the 

fact that the movement of individuals are biased by the signal function S(x, t), but 

independent to each other. However, for the hybrid chemotaxis models described in 
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Sections 2.1 and 2.2, individual bacteria interact via the extracellular signal S which 

complicates the derivation of (3.1). In [11], a kinetic description has been derived for a 

model of interacting locusts, using a modified version of the BBGKY hierarchy from the 

classical kinetic theory of gases [8]. The system we consider here is much more 

complicated to analyse than the locust model studied in [11], due to the variable number 

of bacteria and internal variables. Thus kinetic description (3.1) can only be considered as 

an approximation to the one particle distributions of the interacting system. The capacity 

of the above mesoscopic system to generate travelling bands analogous to those observed 

in the hybrid model is illustrated in Figure 1(c)- (d). For details of the numerical method 

employed for this and other simulations of the continuous model, we refer to [40]. The 

qualitatively and quantitatively close correspondence in solutions under equivalent 

parameters and initial conditions corroborates the use of the above approximation. 

3.2 System (B) 

 We consider a macroscopic model in this section. Define the macroscopic densities 

 

and let them satisfy the following system 

 

where the turning rates λ ± are given by 

 

Using (3.4), equation (3.3) can be written as 

 

We will denote (3.5) and (3.7) along with the definition of λ ± in (3.6) as System (B). 

According to the analysis in [12, 41], System (B) is quantitatively consistent with System 

(A) when the external signal S(x) changes slow enough such that cells are close to their 

fully adapted state, in which case cell movement is only moderately modified by the 

signal.  

In the rest of the paper, we assume diffusion of extracellular signal to occur on a much 

slower time scale than the active motion of the bacteria, hence DS = 0. The number of 

parameters of the above models can be reduced by setting s, S∞, α, β to one through 

rescaling. We show this in detail for System (B) as follows. Rescaling the variables S = 

SSˆ ∞, p ± = ˆp ±αS∞/β, t = t/ˆ (αS∞), x = ˆxs/(αS∞) and the parameters Sc = Sˆ cS∞, λ0 

= λˆ 0αS∞,taking (2.7) and substituting into System (B) we obtain, after dropping hats for 

notational simplicity, 
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We are interested in travelling wave solutions that develop from a pointwise inoculation 

of cells into a domain containing uniformly distributed nutrient S. In this scenario, p ± 

(defined as in each system) should form travelling pulses while S forms a travelling front 

and relevant boundary conditions will be 

 

Note that S− is currently unknown; we determine its value in the travelling wave analysis 

of Section 4. Since p ± and S are physical quantities, we search for nonnegative travelling 

wave solutions, i.e. 

It is clear that a travelling wave of this form cannot exist for Sc ≥ 1 

(extinction of bacteria) or for Sc ≤ 0 (infinite growth) and we will therefore only consider 

systems that satisfy Sc ∈ (0, 1). In the next section we analyse System (B) with respect to 

travelling wave solutions in order to obtain further insight. To do that, we use the rescaled 

system (3.8). 

4 Travelling wave analysis  

In this section we first apply the standard travelling wave ansatz to system (3.8) and 

derive a necessary condition for the existence of non-negative travelling wave solutions. 

We then reduce the resulting ODE system to two components through a change of 

variables and utilizing an invariant manifold identified for the problem. Finally we use 

phase plane methods to analyse the existence and properties of travelling wave solutions. 

4.1 A necessary condition for the existence of travelling wave solutions  

Let us apply the travelling wave ansatz p ±(x, t) = p ±(ξ) = p ±(x − ct) and S(x, t) = S(ξ) = 

S(x − ct), where c is the unknown wave speed [29]. System (3.8) becomes 

 

where the primes denote derivatives with respect to the travelling wave variable ξ. Note 

that any point on the S-axis is a steady state of the system (4.1) and that linear stability of 

such a steady state, (p +, p−, S) = (0, 0, S∗), is governed by the eigenvalues of the matrix 

A−1B, where 

 

The eigenvalues of A−1B are 
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Where 

 

Given 2λ0 > (1 − Sc) it is easy to show that c ∗ ∈ [0, 1]. 

Theorem 1 A necessary condition for the existence of nonnegative travelling wave 

solutions of the system (3.8) is 

 

The above condition is reasonable, as we expect the run duration to occur on a much 

faster time scale than proliferation processes. 

4.2 Dimension reduction  

Let us now perform a change of variables by introducing the cell density n = p + + p − 

and the cell flux j = p + − p −. The travelling wave system (4.1) can then be written as 

 

where the boundary conditions for this system are 

 

From (4.8), we have Sn = cS′ and, hence, n = c(ln S) ′ . Substituting into (4.6) we obtain 

 

Integrating and applying the boundary conditions at ξ → +∞, an invariant manifold of the 

problem is given by 

 

With the definition f(S) ≡ S − 1 − Sc ln S, we obtain j = cn + cf(S), which can be used to 

eliminate j from the system (4.6)–(4.8). For c 6= 1 we can solve for n ′ and obtain the 

reduced system 

 

For c = 1, we obtain 
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where we chose the solution to the quadratic equation for n that satisfies the boundary 

conditions n → 0 as ξ → ±∞. It can be easily shown that f(S) = 0 has two solutions in the 

region (0, 1] for all Sc ∈ (0, 1) as follows. Since f ′ (S) = 1 − Sc/S, f(S) is monotonically 

decreasing for S ∈ (0, Sc) and monotonically increasing for S ∈ (Sc, 1]. With f(1) = 0, this 

implies f(Sc) < 0 and, using f(S) → ∞ for S → 0, we obtain the existence and uniqueness 

of the second root of f(S) = 0: we call it S1 ∈ (0, Sc). The existence of S1 and the 

negativity of f(S) for S ∈ (S1, 1), together with the condition 2λ0 > 1−Sc, implies that n 

as given in (4.11) is positive everywhere, and that the given solution therefore satisfies 

the nonnegativity condition. 

4.3 Steady states and their linear stability  

Using the two roots of f(S) = 0 and under the condition (4.5), it is clear that there are two 

steady states of the system (4.9)-(4.10): (n, S) = (0, 1) and (n, S) = (0, S1). Linearising the 

system (4.9)-(4.10) about its steady states generates a system of the form 

 

where, for the general steady state S∗ ∈ {S1, 1}, we have 

 

With 

 

The eigenvalues of A are identical to µ2,3 as given in (4.2). The steady state (0, 1) is 

therefore a stable node for all c ∈ (c ∗ , 1) with c ∗ as defined in (4.4). Similarly, it can be 

seen that the steady steady (0, S1) is a saddle point. The eigenvectors corresponding to 

the eigenvalues µ2,3 take the form 

 

In the n − S plane, the slopes of the eigenvectors are given by 

 

For the steady state (n, S) = (0, 1) this slope can be written in the form 

 

where we define ∆ = c 2λ 2 0 + (1 − Sc − 2λ0)(1 − Sc) similarly to (4.3). 

Theorem 2  
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For the case χ = 0 (which is equivalent to κ = ∞), a unique travelling wave solution for the 

system (3.8) exists for all c ∈ (c ∗ , 1).  

Proof For any c ∈ (c ∗ , 1) we can define a region Ω (see Figure 3(a)), enclosed by the 

line n = k2(S − 1) (with k2 defined in (4.14)), the S-nullcline n = 0 and the line S = S1. 

We will first show that Ω is an invariant region of the system (3.8). Since S is non-

decreasing everywhere in Ω and n ′ is non-negative for n = 0 and S ∈ [S1, 1], we need 

only to show that the direction field on the segment Γ1 = {(n, S) : n = k2(S − 1), S ∈ [S1, 

1)} points from the top half of the plane above this segment towards the bottom. Since S 

is strictly increasing we require 

 

Indeed, 

 

where we used (4.14) in the first step and the relation f(S)/(S − 1) ≤ 1 − Sc for all S ∈ [S1, 

1]. Using the fact that k2 and (S − Sc − 2λ0) are negative, we can use the definition of c ∗ 

and the fact that S ≤ 1 to obtain 

 

where we used S ≤ 1 throughout the derivation. We can therefore conclude that Ω is an 

invariant region of the system (3.8). Noting that at the steady state (n, S) = (0, S1) the 

unstable manifold has a positive slope (k1,2 = µ2,3c/S∗), i.e. it points into the region Ω, 

and using the fact that S is strictly increasing inside Ω for n > 0 we can conclude that, for 

each c ≥ c ∗ , there is a heteroclinic orbit starting from (0, S1) and finishing at (0, 1), 

corresponding to a travelling wave solution of the PDE system (3.8). 

4.4 Case II: Increasing chemotaxis (0 < κ < ∞)  

Decreasing κ corresponds to an increase in the chemotactic sensitivity χ in the ODE 

system (4.9)–(4.10) and the slope of trajectories in the n − S plane is determined by 
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It is noted that the above slope is larger than that for the non-chemotaxis case within the 

region of interest n > 0. Due to this increase the region Ω for the proof of Theorem 1 is no 

longer invariant for this system and a travelling wave solution to (3.8) does not 

necessarily exist for all c ∈ (c ∗ , 1). The n-nullcline for the full ODE system (4.9)–(4.10) 

is given as the solution of the quadratic equation 

 

For a given wave speed c, the n-nullcline can therefore be calculated as 

 

With 

 

We can see that ∆2(S) → −∞ as S → ∞ due to its leading order term −2λ0χ S3 . 

Therefore, as S becomes large, no n-nullcline exists and n ′ is positive everywhere. 

Additionally, ∆2(S) might have further roots and, in particular, ∆2(S) might be negative in 

parts (or the whole) of region S ∈ [S1, 1]. This again means that n is strictly growing in 

these parts of the domain. We detect three different types of behaviours of trajectories 

starting close to (n, S) = (0, S1), plotted in Figure 4. In particular, we can see each of 

these behavioural types for different values of χ and despite different configurations of the 

nullclines. In the top two plots of Figure 4 we present the case of a diverging solution. 

Examining ODE (4.9), we observe that for large n, n grows quicker than O(n 2 ) and the 

divergence can be identified as a finite-time blowup. In the second case, depicted in the 

two plots in the middle of Figure 4, the trajectory converges to the steady state (0, 1), but 

does so after entering the region S > 1 and thereafter the region n < 0. Note that the steady 

state (0, 1) is still a stable node in this case and that this overshoot is therefore not a 

spiralling effect. Since these trajectories do not correspond to a non-negative solution of 

the ODE system (4.9)–(4.10), they do not represent travelling wave solutions to the 

original problem. The last case, presented in the plots on the bottom of Figure 4, 

corresponds to an acceptable solution and is characterised by the convergence to (0, 1) 

without crossing the line S = 1. 
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Fig. 4 Trajectories of the ODE system (4.9)–(4.10) that highlight the three different cases. 

Parameters in all plots are λ0 = 10, Sc = 0.5. Solid line: trajectory, dashed line: n-

nullcline, dotted lines: n = 0 and S = 1. 

4.5 Case III: Infinite chemotactic sensitivity (κ = 0)  

As κ decreases further we observe that the minimal wave speed necessary to allow a non-

negative travelling wave solution of (3.8) increases. In the limit κ → 0, the ODE system 

(4.9)–(4.10) no longer has convergent solutions. However, in this limit the linearisation 

assumption leading to these ODEs and the system (3.8) is no longer valid and we must 

consider the original turning kernel as defined in (3.2). In the limit κ → 0 the turning rate 

in the hybrid model therefore becomes 

 

Hence, bacteria moving in a favourable direction do not turn, indicating that the wave 

speed achieved in this limit should evolve to c = s = 1. In [40] it was shown, for a slightly 

different turning kernel, that travelling waves can exist even without growth terms and 

that their wave speed satisfies c = s. 

5 Computational analysis of the wave speed  

In this section we computationally compare wave speeds from the hybrid model with 

those of the fully continuous models. Specifically, we investigate the regimes in which 

the latter provide an acceptable insight into the travelling wave behaviour of the hybrid 

model, and where they differ. We begin by investigating the non-chemotaxis case, where 

the minimum wave speed c ∗ for the continuum systems was determined in (4.4). In 

Section 5.2 we show how the wave speed depends on the value of κ, and correspondingly 

the chemotactic sensitivity χ in the macroscopic model. A comparison with hybrid models 

without cell proliferation is given in Section 2.3. We conclude this section with a 
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discussion into the effect and origin of oscillations observed under increasing the 

adaptation time ta. 

5.1 Case I: No chemotaxis (κ = ∞) 

In Section 4.4 we analysed the macroscopic PDEs in the absence of chemotaxis. 

Travelling wave solutions were shown to exist for all wave speeds c ∈ (c ∗ , 1), with c ∗ 

determined by (4.4). In Figure 5(a), variation of (4.4) as a function of λ0 is illustrated; we 

note that wave speeds determined through simulation of the PDE systems correspond 

exactly (to accuracy of the numerical approximation) with the analytical wave speeds. We 

now numerically investigate the wave speed for the case χ = 0 in the hybrid model. For 

our simulations we consider the same parameters and methods as described in Section 

2.3: specifically, we set the system parameters Sc = 0.5, s = 1 and DS = 0. For the 

computations we consider a time step ∆t = 10−3 , a spatial resolution of ∆x = 0.25 on a 

domain with length L = 100, and simulate the system until the value of S at x = 60 falls 

below 0.5. The profiles at this time, together with the time when S at x = 20 falls below 

0.5, are used to estimate the wave speed. The measured wave speed for varying λ0 is 

illustrated in Figure 5(a), along with c ∗ as predicted from the travelling wave analysis. 

While the relationship is similar in shape, we note that at all values of λ0 tested the 

measured wave speed lies below the analytical value c ∗ . In the literature it has been 

observed 

 

Fig. 5 Measured wave speed in the hybrid model. Crosses: individual simulations, dots: 

ensemble averages. Parameters are as described in the text. (a) Wave speed in dependence 

of λ0 for N0 = 10, 000. Dashed line: c ∗ given by (4.4). (b) Wave speed as a function of 

N0 with λ0 = 10. Dashed line: c ∗ computed by (4.4). 

that inaccuracies in numerical schemes can lead to an increase in wave speeds [33], 

therefore rendering the lower wave speed seen in Figure 5(a) as counter intuitive. 

Nevertheless, we can provide the following explanation for the distinct values in the 

continuum and hybrid models. For the zero-chemotaxis case, wave generation and 

movement is solely determined by growth ahead and death behind the wave. In the 

continuum model an outermost “fractional bacteria population” can extend significantly 

beyond the wave front, since some proportion of the initial population never turns left, 

and hence far into the region where S is very close to its initial value of 1. Yet this 

fractional population still grows exponentially (∂p±/∂t ≈ (1−Sc)p ±), seeding the growth 

and expansion of the population. The finite/discrete nature of the hybrid model precludes 

any fractional bacterium: the forward “tail” is necessarily finite and growth will not occur 

beyond the outermost individual. For the above explanation to hold we would expect a 

dependence of the measured wave speed on the initial number of bacteria N0: continuous 

densities provide a closer approximation under larger numbers of bacteria and we would 
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expect convergence in the wave speed to c ∗ . Simulations in Figure 5(b) demonstrate this 

property, corroborating our interpretation. 

5.2 Case II: Increasing chemotaxis (0 < κ < ∞) 

 In the second set of numerical experiments we measure the dependency of the wave 

speed on the critical parameter κ, i.e. we determine the effect of increasing chemotaxis as 

κ decreases. We compare the results measured for the hybrid system with the continuous 

Systems (A) and (B). We use the same parameters as in Section 5.1 and results are shown 

in Figure 6. The results demonstrate the regimes where correspondence across the varying 

modelling levels occurs: while the hybrid model (dotted line) cor- 

 

Fig. 6 Comparison between wave speeds of the various models in dependence of κ. 

Dotted line: hybrid model, red solid line: mesoscopic System (A), dashed line: linearised 

System (B). Parameters are as described in the text. 

responds well with its closest continuous version (mesoscopic System (A), red solid line) 

over a wide range of κ, it only corresponds with System (B) (black dashed line) for larger 

κ, diverging as κ decreases. Note that the turning rate (3.6) used for System (B) becomes 

negative at small values of κ and we limit the range of κ studied accordingly. At larger κ 

all three models converge to a value close to c ∗ as κ grows: in this regime the main 

assumption proposed for the linearisation (|S(x)−y (2)| ≪ κ) holds and we obtain good 

quantitative agreement. While this assumption becomes less acceptable as we decrease κ, 

leading to the divergent behaviour described above, we note that all models show the 

same qualitative agreement: increasing chemotactic responses leads to an increase in the 

wave speed. Note that the results for System (B) can be identically replicated using the 

ODE system (4.9)–(4.10) and a search algorithm for the smallest value of c that admits a 

nonnegative solution to the system. These numerical experiments demonstrate that 

chemotaxis has a significant effect on the speed of movement and that the waves cannot 

solely be explained by growth and death terms. Rather, we interpret birth and death 

processes as stabilisers to what would otherwise be transient waves [15, 40]. This 

interpretation is in agreement with the results presented in Figure 2, as the initial wave 

speed for the system without growth seems to be similar to the wave speed of the system 

including growth and death terms. 

5.3 Oscillations in the wave speed  

An additional observation we made during the numerical experiments of the hybrid model 

is that for increasing values of the adaptation time ta, the wave speed starts to differ 
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strongly from the mesoscopic System (A), an effect that we identified to be due to 

oscillations in the behaviour of the wave. In Figure 7(a) we present an example of 

strongly oscillating wave speeds (where the wave speed is measured as rate of change of 

the average position of bacteria). This example occurred for the parameters Sc = 0.5, λ0 = 

10, κ = 0.001 and ta = 4. We can also clearly see that the wave speed is correlated to the 

current number of agents in the system. In the literature similar effects of oscillating 

waves in stochastic models have been observed [28, 32]. In Figure 7(b), we present the 

form of the wave at different times throughout the simulation. It is clearly visible that the 

shape differs significantly at different times. One reason these oscillations occur when ta 

is very high is that a bacterium that happens to be in front of the wave experiences a very 

high value of S, whilst its internal dynamics only adapt very slowly. This, in combination 

with the low value of κ, leads to a bacterium that does not switch direction for a long time 

and will proliferate at a high rate. This implies that a spike of bacteria forms in front of 

the wave that moves faster than the rest of the wave. We can clearly see such a spike in 

the left-most waveform in Figure 7(b). Once the frontrunning bacterium and its copies 

have turned, the wave goes into a reordering phase (second and third waveform), until, 

eventually, a new spike emerges (4th waveform). In Figure 7(c) we plot the wave speed 

over time for a smaller value of ta. We can see that the oscillations are less severe and 

more frequent than in Figure 7(a), which is in agreement with the explanation above. As 

we decrease ta the frontrunning bacteria will adapt quicker to their surroundings and are 

thereby more likely to turn. We show the influence of changing N0 on the oscillating 

behaviour in Figure 7(d). The oscillations seem to occur with a similar frequency but 

more regular to those before, which can be explained by the increased likelihood of 

frontrunning bacteria with a higher number of agents and reduced noise in the system. 

6 Discussion 

 In this paper we presented a hybrid model of chemotaxis, incorporating a biologically 

realistic turning kernel introduced in [40]. We analysed the travelling wave behaviour of 

this hybrid system using mesoscopic and macroscopic equations, deriving an analytical 

value for the expected wave speed in the case of no chemotaxis. As chemotaxis increases 

we demonstrated (analytically and numerically) that the expected wave speed increases, 

indicating that the wave that forms is not solely driven by growth and death processes. In 

contrast to the transient waves observed for the hybrid model in the absence of growth 

and death terms [15], the (numerical) waves observed here in their presence are stable, 

indicating the stabilising effect of birth and death. The numerical analysis reveals that the 

macroscopic equations derived through linearisation of the turning kernel can 

qualitatively describe the change in wave speed as chemotaxis increases, but that there are 

significant quantitative differences 
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Fig. 7 Oscillations in the wave speed of the hybrid model (2.2)–(2.6) and (2.10). (a) Wave 

speed in comparison to current number of particles for N0 = 10, 000, ta = 4. Solid line: 

wave speed, dashed line: number of particles, dotted lines: times of wave forms shown in 

panel (b). (b) Waveform at 4 distinct times marked in panel (a) from left to right. (c) As in 

(a) with N0 = 10, 000, ta = 2. (d) As in (a) with N0 = 50, 000, ta = 4. Other parameters are 

given in Section 5.3. 

between the two systems. Additionally, we observed oscillations in the wave movement, 

an effect that had been seen in similar systems in the literature [32] and that cannot be 

explained using mean-field approximations. To date, travelling waves in chemotaxis 

models have mainly been analysed from the perspective of macroscopic PDE models of 

chemotaxis [19, 18]. The existence of travelling waves for continuum models with growth 

terms is well established [36, 30, 22]. While hybrid models have been used to study 

pattern formation in bacterial chemotaxis [17, 39], these studies have not analysed the 

travelling wave patterns observed in bacterial cell populations. Recently, experimental 

studies using microfluidic techniques tracked cell trajectories within a traveling pulse, and 

revealed that persistence of direction in cell movement accounts for 30% of the 

macroscopic speed of the traveling pulse [35]. The hybrid model framework studied here 

provides a natural method for direct comparison of model predictions with experimental 

measurements of cell trajectory, and this is left as future work. 
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