SYMMETRIES OF MANY-BODY SYSTEM SIMPLY DISTANCEDEPENDENT POTENTIALS

A.SWAPNA
Assistant professor
Department of Mathematics
Sree Chaitanya College Of Engineering,Karimnagar

Abstract

: It is demonstrated that U can be constructed as a function of the interatomic distance variables rij $=|q i-q j|$, given that the potential U meets certain symmetry assumptions, by considering the interatomic potential $\mathrm{U}(\mathrm{q})$, where $\mathrm{q}=[\mathrm{q} 1$, $\mathrm{q} 2, \ldots, \mathrm{qN}] \in \mathrm{R} 3 \mathrm{~N}$ is a vector defining locations, qi $\in R 3$. Furthermore, if $N>5$, the potential U can be expressed as a function of a suitable subset of the distance variables rij, where the number of distance variables varies in a linear fashion with N , the number of atoms.

INTRODUCTION

The theory of classical interatomic potentials has been developed for decades, a review of this research area is provided by Murrell et al [1] or more recently by Ackland [2]. The basis of molecular modelling is dependent on creating a suitable potential energy function that defines the free energy surface and dynamics of the system, accurately, while also balancing computational feasibility. One must compromise by reducing degrees of freedom with some method of coarse-graining [3]. A key way to do this is by explicitly constructing a potential energy function that reduces the complexity of the system. Many such function choices can naturally arise for a given system [4]. Commonly pair potentials are used to approximate potential energy contributions though caution must be taken to use these appropriately [5]. Despite this: effective pair potentials in many classical circumstances have had fair degrees of success for decades in
simulations of liquids [6-11]. To obtain more accurate results from thermodynamic calculations, many-body contributions are considered in the potential energy function [12, 13]. An example potential incorporating two-body and three-body terms is the Stillinger-Weber potential [14] which accurately incorporates the geometry of silicon, meaning that not only do the pairwise bonds between the silicon atoms matter, but also the triangular sub structures connecting neighbouring atoms [15]. The embedded atom method potentials [16] incorporate an effective pairwise potential and a density dependent contribution without using the geometric features explicitly. Progressing from pair potentials, to those incorporating three-body terms, and four body terms, the most general interatomic potential considered is a sum of all of these contributions, which can also include the single body terms that arise when an external field is present. The n-body terms are explicitly evaluated given the coordinates of the N atoms: which can be thought of as vertices of a polygon (if co-planar) or a polyhedron. These n-body terms in the potentialare then thought of as contributions arising from the ngon substructures of the shape formed by the vertices. This forms the basis of fragmentation methods used in ab initio quantum chemistry, a summary and a closed form expression for energy is presented by Richard et al [17]. Tandem to this, cluster descriptions of manybody configurations [18] can also be used in conjunction with n-body expansions of the many-body potential [19], this differs from
the previous method as this relies on the ordering of vertices as opposed to their position. Non-reciprocal interactions, where pairwise forces do not obey Newton's third law [20], are applicable to colloidal physics [21], active transport [24], and plasma physics [22, 23]. The statistical mechanics framework used to analyse such a system that exhibits nonreciprocity relies on defining an interatomic potential: Ivlev et al [25] have provided some pioneering analysis in this area. A question that has not been answered is characterising when a general interatomic potential displays nonreciprocal interactions. For example, if the potential depends purely on pairwise distances, then reciprocity is a consequence, so one possible way to approach this problem is to study under what symmetries can we conclude that a general position dependent potential function, can be written as function that depends purely on distances. Separately, this is a fundamental question that underpins classical potential theory, and it is addressed in this paper in Theorems 1 and 2 . We should note that thought into symmetries of a potential has been undertaken by Kinghorn et al [26]: this was used to analyse a specific functional form of potential developed, whilst in Section II we consider a general potential with the goal of understanding when distances are appropriate variables used to describe the potential function. The potential function U considered in this paper has translational, rotational and reflectional symmetries as formulated in Definition 1, where we study systems of identical particles (atoms, or more generally, coarse-grained particles). We present proofs of Theorems 1 and 2 in Section III, where we also show that we only require a relatively small subset of distances to uniquely determine the
potential as stated in Theorem 2. Limitations of this description are discussed in Section IV, where we also present some generalizations of Theorems 1 and 2 to mixtures of atoms of different types.

The configuration of a system of N atoms at positions qi $, i=1,2, \ldots, N$, is defined as a 3 N -dimensional vector $\mathrm{q}=(\mathrm{q} 1, \mathrm{q} 2, \ldots$., qN) \in R 3 N . We note that these can provisionally be thought of as vertices of an N -gon, or an N -polyhedron, assuming that qi $6=q j$ for i $6=j$. The lengths of edges are distances between atoms, which we denote by

$$
\begin{equation*}
r_{i j}=\left|\mathbf{q}_{j}-\mathbf{q}_{i}\right|, \quad \text { for } \quad i, j=1,2, \ldots, N . \tag{1}
\end{equation*}
$$

In this paper, we study potential functions $\mathrm{U}: \mathrm{R} 3 \mathrm{~N} \rightarrow \mathrm{R}$ called central potential functions which satisfy certainsymmetries as specified in Definition 1. These symmetries are: (i) translational invariance; (ii) rotational invariance; (iii) reflectional invariance; and (iv) parity for i,j identical atoms. An example of potential satisfying the assumptions in Definition 1 is

$$
\begin{equation*}
U(\mathbf{q})=\sum_{i<j}^{N} \Psi_{2}\left(r_{i j}\right)+\sum_{i<j<k}^{N} \Psi_{3}\left(r_{i j}, r_{i k}, r_{j k}\right), \tag{2}
\end{equation*}
$$

The symmetries considered in Definition 1 are satisfied by other generalizations of the example potential (2), which include n body terms depending only on the distances (1) between atoms. In fact, the symmetries (i)-(iv) imply that the potential $\mathrm{U}: \mathrm{R} 3 \mathrm{~N} \rightarrow \mathrm{R}$ can be written as a function of distances. We have the following theorem which we prove in Section III.

Theorem 1. A central potential function U : $\mathrm{R} 3 \mathrm{~N} \rightarrow \mathrm{R}$ can be written as

$$
\phi:[0, \infty)^{N(N-1) / 2} \rightarrow \mathbb{R},
$$

where the $\mathrm{N}(\mathrm{N}-1) / 2$ inputs are interpreted as the set of all pairwise distances (1) between atoms. Considering $\mathrm{N}=2$, Theorem 1 states that a central potential function U of 6 variables can be written as a function φ of 1 variable, r12. Consequently, Theorem 1 reduces the dimensionality of the potential U for any N <7. If $\mathrm{N}=7$, then we have $3 \mathrm{~N}=\mathrm{N}(\mathrm{N}-$ $1) / 2=21$ and the 21-dimensional state space R 3 N corresponds to the 21 distance variables (1). Since the dimension of the state space scales as $\mathrm{O}(\mathrm{N})$ and the number of distances scales as $\mathrm{O}(\mathrm{N} 2)$, Theorem 1 can be further improved by considering only a subset of the distance variables (1). In Section III, we also prove the following result.

Theorem 2. Let $\mathrm{N} \geq 4$. Then a central potential function $\mathrm{U}: \mathrm{R} 3 \mathrm{~N} \rightarrow \mathrm{R}$ can be written as

$$
\phi:[0, \infty)^{4 N-10} \rightarrow \mathbb{R},
$$

where the $(4 \mathrm{~N}-10)$ inputs are a subset of the set of all pairwise distances (1). Considering $\mathrm{N}=4$ and $\mathrm{N}=5$, we have 4 N $-10=6$ and $4 \mathrm{~N}-10=10$, respectively. In particular, Theorems 1 and 2 state the same conclusion for $\mathrm{N}=4$ and $\mathrm{N}=5$. Theorem 2 improves the result of Theorem 1 for $\mathrm{N}>$ 5. We will prove Theorems 1 and 2 together in Section III by considering the cases $\mathrm{N}=2, \mathrm{~N}=3, \mathrm{~N}=4, \mathrm{~N}=5$ and $\mathrm{N}>$ 5. Applying Theorem 2 to our example potential (2), we observes that it reduces the number of independent variables for N >5. In particular, while function φ constructed in the proof of Theorem 2 depends only on distances (1), it is not given in the form (2). In addition to central potential functions satisfying conditions in Definition 1, there are potentials to which

Theorems 1 and 2 are not applicable. For example, if the potential U corresponds to an external non-uniform

$$
U(\mathbf{q})=\sum_{i=1}^{N} \Psi_{1}\left(\mathbf{q}_{i}\right)
$$

and U will neither satisfy the conditions in Definition 1, nor will it be possible to write as a function of pairwise distances (1). Assuming that there is no external field present and that we have a system of N identical atoms interacting (i.e. U satisfies condition (iv) in Definition 1), then we can formally write it as a sum of the n -body interactions for $2 \leq \mathrm{n} \leq \mathrm{N}$ in the form

$$
\begin{array}{r}
U(\mathbf{q})=\sum_{i<j}^{N} U_{2}\left(\mathbf{q}_{i}, \mathbf{q}_{j}\right)+\sum_{i<j<k}^{N} U_{3}\left(\mathbf{q}_{i}, \mathbf{q}_{j}, \mathbf{q}_{k}\right)+\ldots \tag{3}\\
\cdots+U_{N}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right),
\end{array}
$$

where we can naturally think about npolyhedrons of atoms as the input to the potential function, but these are fixed in space and a natural assumption is that given this input, it should not matter where we fix this polyhedron (leading to translational invariance (i)), or how we orient this polyhedron (rotational invariance (ii)). One slightly more subtle assumption, is that we should be allowed to reflect our polyhedron in any plane that keeps the polyhedron on one side (reflectional symmetry (iii)). One difference between symmetries (i)-(ii) and (iii)- (iv) is that the former ones are continuous symmetries whereas the reflection invariance (iii) and parity (iv) are not. Noether's theorem [27] states that each continuous symmetry gives rise to a corresponding conserved quantity (in a closed system). In particular, translational invariance (i) leads to conserved linear momentum (which is a consequence of reciprocity of forces) and rotational invariance (ii) gives rise to conserved
angular momentum. In the next section, we provide a proof that functions obeying symmetries (i)-(iv) should only rely on distances and we also show that a proper subset of pairwise distances for $\mathrm{N}>5$ can be used to describe the potential function U.

III. PROOFS OF THEOREMS 1 AND 2

We prove Theorems 1 and 2 together by considering the cases $\mathrm{N}=2, \mathrm{~N}=3, \mathrm{~N}=4$ and $\mathrm{N}=5$, followed by an inductive argument for $\mathrm{N}>5$. We define displacement vectors by

$$
\begin{align*}
& \qquad \boldsymbol{\Delta}_{i j}=\mathbf{q}_{j}-\mathbf{q}_{i} \text {, for } i, j=1,2, \ldots, N, \tag{4}\\
& \text { i.e. we have } r_{i j}=\left|\boldsymbol{\Delta}_{i j}\right| \text {. }
\end{align*}
$$

A. The case $\mathrm{N}=2$

We define function $\varphi:[0, \infty) \rightarrow \mathrm{R}$ by

$$
\begin{equation*}
\phi(s)=U(\mathbf{0}, s \hat{\mathbf{k}})=U(0,0,0,0,0, s) \tag{5}
\end{equation*}
$$

where k^{\wedge} is a unit vector in the direction of the positive z axis and $0=$ [$0,0,0]$. Given atom positions q1, q2 $\in R 3$, we translate the configuration to position atom 1 at the origin. Using symmetry (i) in Definition 1, we have $\mathrm{U}(\mathrm{q} 1, \mathrm{q} 2)=\mathrm{U}(0, \Delta 12)$. We then rotate the axes using rotation R1 $\in S O(3)$ such that the displacement vector connecting the two atoms is aligned with the positive z axis, giving $\mathrm{R} 1 \Delta 12$ $=\mathrm{r} 12 \mathrm{k}^{\wedge}$, while maintaining R10 $=0$. Using symmetry (ii) in Definition 1, we have

$$
U\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)=U\left(\mathbf{0}, \boldsymbol{\Delta}_{12}\right)=U\left(\mathbf{0}, r_{12} \hat{\mathbf{k}}\right)=\phi\left(r_{12}\right),
$$

where the last equality follows from our definition (5). This concludes the proof of Theorem 1 for $\mathrm{N}=2$.
B. The case $\mathrm{N}=3$

Given atom positions $q 1, q 2, q 3 \in R 3$, we consider the function $\mathrm{U}(\mathrm{q} 1, \mathrm{q} 2$, q3). Using symmetry (i) in Definition 1, we translate the configuration to position atom 1 at the origin and consequently, we have

$$
U\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right)=U\left(\mathbf{0}, \boldsymbol{\Delta}_{12}, \boldsymbol{\Delta}_{13}\right)
$$

Given that we have three axes to rotate around, we canalways find a rotation R1 such that R1 $\Delta 12=r 12 \mathrm{k}^{\wedge}$, as wedid in the $\mathrm{N}=2$ case. Using symmetry (ii), we have

$$
U\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right)=U\left(\mathbf{0}, r_{12} \hat{\mathbf{k}}, R_{2} R_{1} \boldsymbol{\Delta}_{13}\right) .
$$

However the key point is that R2R1 1013 is uniquely defined by the triangle with lengths r12, r13 and r23, theangles of which can be calculated using the cosine rule,i.e. R2R1 $1 \Delta 13$ can be expressed as

$$
\left[\sqrt{r_{13}^{2}-\left(\frac{r_{13}^{2}+r_{12}^{2}-r_{23}^{2}}{2 r_{12}}\right)^{2}}, 0, \frac{r_{13}^{2}+r_{12}^{2}-r_{23}^{2}}{2 r_{12}}\right] \text {. (6) }
$$

Therefore there exists function φ : $[0, \infty) 3 \rightarrow R$ suchthat $U(q 1, q 2, q 3)=$ $\varphi(\mathrm{r} 12, \mathrm{r} 13, \mathrm{r} 23)$, for any $\mathrm{q} 1, \mathrm{q} 2$ andq3, confirming Theorem 1 for $\mathrm{N}=3$.
C. The case $\mathrm{N}=4$

Given atom positions q1, q2, q3, q4 \in R3, these can bethought of defining the vertices of a tetrahedron (or ifco-planar a quadrilateral). Following similar steps as inthe case $\mathrm{N}=3$ in Section III B, we translate atom 1

FIG. 1. A schematic of the constructive method in aid of theproof for the case $\mathrm{N}=3$.to the origin, apply rotation R1 to orient displacementvector $\Delta 12$ with the positive z axis, then do a secondrotation R2 that fixes the triangle formed by the verticesof atoms 1,2 and 3 in the $\mathrm{x}-\mathrm{z}$ plane. As in Section III B, we have

$$
U\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \mathbf{q}_{4}\right)=U\left(\mathbf{0}, r_{12} \hat{\mathbf{k}}, R_{2} R_{1} \boldsymbol{\Delta}_{13}, R_{2} R_{1} \boldsymbol{\Delta}_{14}\right) .
$$

Using equation (6), we know that R2R1 143 is determined entirely by distances r12, r13 and r23. All thatremains to be shown is that R2R1D14 is determined bypairwise istances. We note that the triangle formed byatoms 1, 2 and 3 (denoted as ABC in the lower partof our illustration of the proof in Figure 2) is uniquelydetermined (after orienting one side with the positive zaxis). Consequently, this fixes the side BC . On the otherhand the triangle BCD is uniquely determined (as oneside BC is fixed) by distances r23, r24 and r34. These canbe thought of as two triangles which can rotate around ahinge BC , so to determine the vector R2R1414, we necessarily need the final distance r14 that gives the anglebetween the planes containing triangles ABC and BCD (two configurations are illustrated in Figure
2). If triangles $A B C$ and $B C D$ are coplanar, the set of all pairwise distances, with this orientation, will give a uniquedescription of R2R1D14. If these triangles are not coplanar, this final distance gives two possible vectors forR2R1 14 . These correspond to a unique R2R1014 andthe copy obtained by reflection in the plane containingtriangle ABC. However by property (iii) we know thatif we reflect in the plane containing ABC with a matrixdenoted Q , then

$$
\begin{aligned}
& U\left(\mathbf{0}, r_{12} \hat{\mathbf{k}}, R_{2} R_{1} \boldsymbol{\Delta}_{13}, R_{2} R_{1} \boldsymbol{\Delta}_{14}\right) \\
& \quad=U\left(\mathbf{0}, r_{12} \hat{\mathbf{k}}, R_{2} R_{1} \boldsymbol{\Delta}_{13}, Q R_{2} R_{1} \boldsymbol{\Delta}_{14}\right)
\end{aligned}
$$

Therefore there exists function $\varphi:[0, \infty) 6$ $\rightarrow R$ suchthat $U(q 1, q 2, q 3, q 4)=\varphi(r 12$, r13, r14, r23, r24, r34), forany q1, q2, q3 and q 4 , confirming Theorem 1 for $\mathrm{N}=4$.

FIG. 2. A schematic of the constructive method in aid ofthe proof for $\mathrm{N}=4$. For clarity we have only highlightedthe additional three displacement vectors, though the triangleformed by vertices $\{1$, $2,3\}$ lying in the $x-z$ plane is the sameas in Figure 1.

The case $\mathrm{N}=5$ To proceed in this case, we note that any N vertex polyhedron can be made by adding a single vertex to an $\mathrm{N}-1$ polyhedron or polygon (in the case where all other points are co-planar). The task at hand, as in the case $\mathrm{N}=4$ in Section III C,
is being able to determine the displacement vectors once we have translated and rotated the configuration such that R2R1D12 $=$ r12k^ is aligned with the positive z axis. An $\mathrm{N}=5$ polyhedron can be constructed from either adding a vertex onto a pre-existing $\mathrm{N}=4$ polyhedron (at most 3 points are co-planar), or an $\mathrm{N}=4$ polygon (where all points are co-planar). In the first case, we may take any 3 vertices on the pre-existing polyhedron: call these vertices the transformed positions of atoms 2, 3, 4 (by property (iv) in Definition 1). If we know r25, then this fifth vertex must lie on a sphere of radius r25, with the transformed position of atom 2 as the centre: we denote this S2. Similarly, we construct S3 and S4 as spheres of radii r 35 and r 45 respectively. This is illustrated in Figure 3(a). The fifth vertex lies at the intersection of three spheres S2, S3 and S4, which contains at most two points. If it contains exactly two points, then we need another distance r15 (which is the distance from the vertex in the pre-existing polyhedron that was not used as a centre of spheres S2, S3 or S4) to determine which of those two positions is correct, see Figure 3(b). In this way: 4 more distances are used to specify all of the vertices of the $\mathrm{N}=5$ polyhedron. Therefore, there exists function $\varphi:[0, \infty)$ $10 \rightarrow R$ such that $U(q 1, q 2, q 3, q 4, q 5)=$ $\varphi(\mathrm{r} 12, \mathrm{r} 13, \mathrm{r} 14, \mathrm{r} 15, \mathrm{r} 23, \mathrm{r} 24, \mathrm{r} 25, \mathrm{r} 34, \mathrm{r} 35$, r 45), for any $\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4$ and q 5 . To arrive at this conclusion, we used an assumption that no four points are coplanar. If this is not the case, then we need less distances for the specific configuration.

For example, if the pre-existing 4 vertices are co-planar: utilising the sphere approach for any three of those vertices will result again in two possible positions for vertex 5, however using the pairwise distance between this vertex and the new vertex gives no information, as the fourth point lies on the plane of symmetry formed by the spheres. In this case we use property (iii), considering the reflective symmetry about this plane to argue that we have determined all displacement vectors with this orientation uniquely up to a reflection in the plane containing vertices $1,2,3$ and 4. In this case, we do not need the fourth distance mentioned above, and evaluating $\mathrm{U}(\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4, \mathrm{q} 5)$ is possible with the 9 pairwise distances. The tenth distance is also not needed if the intersection of spheres S2, S3 and S4 is exactly equal to one point (when vertices 2,3 and 4 are colinear). Thus we have proven Theorems 1 and 2 in the case $\mathrm{N}=5$.

E. The case $\mathrm{N}>5$

We inductively prove that a similar setup as in the $\mathrm{N}=5$ case in Section III D works by constructing polyhedra of higher order by the addition of a new vertex. Say that the $\mathrm{N}-1$ case required the set of distances $\mathrm{DN}-1$ to evaluate $\mathrm{U}(\mathrm{q} 1, . . ., \mathrm{qN}-1)$, where $|\mathrm{DN}-1|=4(\mathrm{~N}-1)-10$. Which is true for the base case of $\mathrm{N}=5$. The most general case to consider is when we have an $\mathrm{N}-1$ polyhedron before we introduce the new vertex. In this case, any three of the $\mathrm{N}-1$ vertices can be chosen, say i, j, k . The three distances riN , rjN, rkN are
used to create three intersecting spheres and two potential positions for vertex N . We use vertex l, which is not coplanar to i , j , k and distance rlN determines this position uniquely. Therefore the required set of distances to evaluate $\mathrm{U}(\mathrm{q} 1, \ldots, \mathrm{qN})$ is $\mathrm{DN}=\mathrm{DN}-1 \mathrm{U}\{\mathrm{riN}, \mathrm{rjN}, \mathrm{rkN}, \mathrm{rlN}\}$, i.e. we need $4 \mathrm{~N}-10$ pairwise distances. If there are at least four co-planar points, then we only need 3 additional pairwise distances (so we would only need $4 \mathrm{~N}-11$ pairwise distances). Since the inductive step holds for all N , and it works for the base case of $\mathrm{N}=5$, this concludes our proofs of Theorems 1 and 2 for all N .

IV. DISCUSSION AND CONCLUSIONS

Theorems 1 and 2 demonstrate that the potential U can be expressed in a way that solely depends on the pairwise distances between atoms due to the manybody system's symmetry. Theorem 1 provides a non-linear transformation of U from a function of 3 N variables q into a function of $\mathrm{N}(\mathrm{N}-1) / 2$ distance variables, which is not optimal as it is demonstrated in Theorem 2, where the number of distance variables scales linearly with N . This is because U is a function of the 3 N dimensional state space. Theorem 2 reduces the number of distance variables to $\mathrm{O}(\mathrm{N})$, taking into account the example potential (2) that depends on all $\mathrm{N}(\mathrm{N}-1) / 2$ distance variables. But if we utilize the potential's resultant form, φ, this does not directly

$$
\begin{equation*}
U\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{N}\right)=\sum_{\{i, j\} \in \mathcal{S}} \frac{1}{r_{i j}}+\sum_{\{i, j\} \notin \mathcal{S}} \frac{1}{r_{i j}}, \tag{7}
\end{equation*}
$$

where S is the collection of pairs of indices $\{\mathrm{i}, \mathrm{j}\}$ corresponding to the subset of distances that is used to determine φ in Theorem 2 . where rij is defined by (1). The number of terms in the first sum on the right side of (7) is $\mathrm{O}(\mathrm{N})$, but the number of
terms in the second sum on the right side of (7) scales as $\mathrm{O}(\mathrm{N} 2)$. This indicates that the number of elements in the set S scales as $\mathrm{O}(\mathrm{N})$, according to Theorem 2. We can find $k \in\{1,2, \ldots, N\}$ such that $\{i, k\} \in S$ and $\{j, k\} \in S$ by taking $\{i, j\} 6 \in S$ into consideration. Specifically, the cosine rule can be used to describe distance rij for \{i, j\} $6 \in S$ in terms of distances rik and rjk. As a result, for any index in the set S , we may find an explicit form of the potential U as a function of $\mathrm{O}(\mathrm{N})$ distances. Summations over O(N2) terms, however, will be present in the second term of the form (7). In other words, Theorem 2 does not make the φ computations less complex than $\mathrm{O}(\mathrm{N} 2)$. It is provided to show that, just as the dimension of the phase space scales linearly with N , so does the number of distance variables required. Theorem 2 offers a non-linear translation of U, which is a function of 3 N variables q , into a 4 N 10 distance variable function, φ, for $\mathrm{N} \geq 4$. For $\mathrm{N}>11$, this result does not lower the number of independent variables, even though it improves the $\mathrm{O}(\mathrm{N} 2)$ scaling of Theorem 1. The number of distance variables used in Theorem 2 to determine φ is equal to the number of independent variables defining U if $\mathrm{N}=10$, and Theorem 2 reduces the dimensionality if N < 10. Symmetries (i)-(iv) of a central potential function in Definition 1 indicate that the potential can be expressed as a function of pairwise distances (1), which is the formulation of Theorem 1. However, a partial inverse of Theorem 1 also holds, i.e., any potential provided as a function of pairwise distances fulfills symmetry assumptions (i)-(iii). Translations, rotations, and reflections are Euclidean isometries, preserving pairwise distances between atoms. In this study, we consider systems of identical particles, as stated in property (iv). Specifically, for systems of identical atoms, symmetries (i)-(iv) are
both sufficient and essential for a potential to be represented as a function of pairwise distances. Theorems 1 and 2 can be extended to particle mixes, meaning that they apply to systems in which Definition 1's symmetry (iv) is broken. Then, potential U can be defined as a function of pairwise distances, according to characteristics (i)-(iii) of the potential. Potential functions that cannot be represented as a function of pairwise distances can be found by further reducing the number of symmetries that the potential U possesses. As an illustration,

$$
U(\mathbf{q})=U\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{N}\right)=\mathbf{d} \cdot\left(\mathbf{q}_{2}-\mathbf{q}_{1}\right)
$$

fulfills the translational symmetry (i) but not the rotational symmetry (ii) for every nonzero constant vector $d . U(q)=|q 1|$ is an example of a potential function that satisfies the translational symmetry (i) but not the rotational symmetry (ii). Indeed, for a potential to be represented as a function of pairwise distances (for systems of non-identical particles), symmetries (i)(iii) are both sufficient and essential.

REFERENCES

[1] J. Murrell et al. Molecular potential energy functions. Wiley (1984)
[2] G. Ackland. Interatomic potential development. Comprehensive Nuclear Materials, pp. 267-291 (2012)
[3] W. Noid. Perspective: coarse-grained models for biomolecular systems. Journal of Chemical Physics 139(9), 090901 (2013)
[4] M. Hoef and P. Madden. Three-body dispersion contributions to the thermodynamic properties and effective pair interactions in liquid argon. Journal of Chemical Physics 111(4), pp. 1520-1526 (1999)
[5] A Louis. Beware of density dependent pair potentials. Journal of Physics: Condensed Matter 14, pp. 9187 (2002)
[6] M. Sprik Effective pair potentials and beyond. In: Computer Simulation in Chemical Physics. NATO ASI Series, vol 397, Springer, Dordrecht (1993)
[7] C. Zhao et al. Seven-site effective pair potential for simulating liquid water. Journal of Physical Chemistry B 123(21), pp. 4594-4603 (2019)
[8] J. Bomont and J. Bretonnet. An effective pair potential for thermodynamics and structural properties of liquid mercury. Journal of Chemical Physics 124, 054504 (2006)
[9] J. Utterson and R. Erban. On standardised moments of force distribution in simple liquids. Physical Chemistry Chemical Physics 24, pp. 5646-5657 (2022)
[10] K.O. Waseda. Structure and effective pair potential of liquid silicon. Japanese Journal of Applied Physics 35, pp. 151 (1996)
[11] R. Erban and S.J. Chapman. Stochastic modelling of reaction-diffusion processes. Cambridge Texts in Applied Mathematics, Cambridge University Press (2020) 7
[12] S. Plimpton and A. Thompson. Computational aspects of many-body potentials. MRS Bulletin. Cambridge University Press 37(5), pp. 513-521 (2012)
[13] G. Cisneros et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chemical Reviews 116(13), pp. 75017528 (2016)
[14] F. Stillinger and T. Weber. Computer simulation of local order in condensed phases of silicon. Physical Review B 31(8), pp. 5262 (1985)
[15] R. Biswas and D. Hamann. New classical models for silicon structural energies. Physical Review B 36(12), pp. 6434 (1987)
[16] M. Daw and M. Baskes. Embeddedatom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B 29(12), pp. 6443 (1984)
[17] R. Richard, K. Lao and J. Herbert. Understanding the many-body expansion for large systems. I. precision considerations. Journal of Chemical Physics 141(1), 014108 (2014)
[18] J. Sanchez, F. Ducastelle and D. Gratias. Generalized cluster description of multicomponent systems. Physica A: Statistical Mechanics and its Applications 128(1-2), pp. 334-350 (1984)
[19] R. Drautz, M. F"ahnle, and J. Sanchez. General relations between manybody potentials and cluster expansions in multicomponent systems. Journal of Physics: Condensed Matter 16(23), pp. 3843 (2004)
[20] S. Loos et al. Nonreciprocal forces enable cold-to-hot heat transfer between nanoparticles. Scientific Reports 13, 4517 (2023)

