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Abstract 

A remotely controlled weapon station or automated turret is a two-degree-of-freedom 

articulated system that supports a weapon to be aimed in a controlled manner. Using the 

Lagrange equations, a nonlinear model presented in equations of state is proposed, and then a 

Lyapunov stability analysis is applied and the relevant conclusions are issued. 

Index Terms—Turret, 2 DoF System, Stability, Lyapunov. 

Introduction 

A remotely controlled weapon station or automated turret is a two-degree-of-freedom 

articulated system that supports a weapon, which after designating a target, is aimed and 

operated remotely. Actuated by two servo motors to provide lifting and azimuth movements 

and fed back by their respective encoders, the system is mounted on land or naval vehicles and 

can be operated during vehicle movement. This displacement can add to the system 

disturbances associated with the surface on which the vehicle transits, in the case of a warship, 

the waves and water movements are abstracted with non-linear models. 

 
Fig. 1. Turret design 

The present article presents a model of the nonlinear system from the kinematic 

equations using the Denavit-Hartenberg notation, then the Euler-Lagrange dynamical 
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equations are derived thus generating the system of differential equations that describe the 

dynamics of the system. 

Subsequently, a stability analysis is performed on the system modeled in state variables, 

with the aim of obtaining a complete description of the model so that in a future work it is 

facilitated to design an adequate controller and reject the disturbances that may affect the 

correct functioning of the physical device. 

II Dynamic system model 

The mathematical modeling of the remote weapon station system is based on a two-

degree freedom system of the prototype under development. 

The mechanical assembly is divided into two parts: the base platform, which produces 

the rotational angle on the Z-axis or azimuth, and the lifting turret that provides the elevation 

angle. 

 
Fig. 2. Side view of the turret 

As can be seen in the 2 and 3 the elevation angle will be represented with θ1 and the 

azimuth angle with θ2. The total mass of  the system is m 1, this means that the complete 

system will move in azimuth, and m2 is the  mass of the components that rotate in elevation 

(weapon, camera, ammunition box). The distance between the axes of rotation along the x-axis  

is R1 and the  length between the axis of rotation and the center of mass of m2 is R2. 

To generate the model of the system, the kinematics of the center of gravity of the lifting 

turret are first found. For this the Denavit-Hartenberg notation is used, and the transformation 

matrix is found: 
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Fig. 3. Top view of the turret 

Table 1. Parámetros Denavit-Hartenberg 

Link ai 𝒂𝒊 𝒅𝒊 𝜽𝒊 

1 (base) 𝑅1 90° 0 𝜃1 

2 (turret) 𝑅2 0° 0 𝜃2 

The compact notation𝑆𝑖𝑛𝜃 = 𝑆𝜃  and 𝐶𝑜𝑠𝜃 = 𝐶𝜃. The matrix of 

is:𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑐𝑖ó𝑛 0
2𝑇 

 

10
2𝑇 = (

𝐶𝜃1𝐶𝜃2 −𝐶𝜃1𝑆𝜃2 𝑆𝜃1 𝑅1𝐶𝜃1 + 𝑅2𝐶𝜃1𝐶𝜃2
𝑆𝜃1𝐶𝜃2 −𝑆𝜃1𝑆𝜃2 −𝐶𝜃1 𝑅1𝑆𝜃1 + 𝑅2𝑆𝜃1𝐶𝜃2
𝑆𝜃2 𝐶𝜃2 0 𝑅2𝑆𝜃2
0 0 0 1

) 

(1) 

The X position of the center of mass of set 2 (turret) is given by the fourth column of 

the matrix of 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑐𝑖ó𝑛 0
2𝑇 

 𝑋𝑥 = 𝑅1𝐶𝜃1 + 𝑅2𝐶𝜃1𝐶𝜃2 
𝑋𝑦 = 𝑅1𝑆𝜃1 + 𝑅2𝑆𝜃1𝐶𝜃2 

𝑋𝑧 = 𝑅2𝑆𝜃2 

(2) 

To find the dynamic equations of the system, use the Euler-Lagrange equations 

following the following steps [6]: 

• Calculation of the kinetic energy of the system. 

• Calculation of the potential energy of the system. 

• Lagrangian calculation. 
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• Solve the equations for each degree of freedom. 

Calculation of the kinetic energy of the system 

The kinetic energy of the base is calculated as a body that does not present translational 

motion, only rotation on the horizontal plane. Therefore, its kinetic energy is: 

 
𝐾1 =

1

2
𝐽1𝜔1

2 =
1

2
𝐽1𝜃1

2̇ 
(3) 

The kinetic energy of the barrel array is calculated: 

 
𝐾2 =

1

2
𝑚2𝑣2

2 +
1

2
𝐽2𝜔2

2 =
1

2
𝑚2𝑣2

2 +
1

2
𝐽2𝜃2

2̇ 
(4) 

The total kinetic energy of the system is: 

 𝐾 = 𝐾1 + 𝐾2 

𝐾 =
1

2
𝐽1𝜃1

2̇ +
1

2
𝑚2𝑣1

2 +
1

2
𝐽2𝜃2

2̇ 

(5) 

where is the linear velocity of the center of mass of the lifting turret and is written in 

terms of from the position of the center of mass and the derivative in time of its 

components:𝑣2
2𝜃1𝑦𝜃2 

 𝑣 = �̇� = [𝑋�̇� 𝑋�̇� 𝑋�̇�]
𝑇

 

𝑋�̇� = −𝑅1𝜃1̇𝑆𝜃1 + 𝑅2(−𝜃1̇𝑆𝜃1𝐶𝜃2 − 𝜃2̇𝑆𝜃2𝐶𝜃1) 

𝑋�̇� = 𝑅1𝜃1̇𝐶𝜃1 + 𝑅2(𝜃1̇𝐶𝜃1𝐶𝜃2 − 𝜃2̇𝑆𝜃1𝑆𝜃2) 

𝑋�̇� = 𝑅2𝜃2̇𝐶𝜃2 

(6) 

 

 𝑣2 = (𝑅1 + 𝑅2𝐶𝜃2)
2𝜃1
2̇ + 𝑅2

2𝜃2
2̇ (7) 

Substituting in the total kinetic energy: 

 
𝐾 =

1

2
𝐽1𝜃1

2̇ +
1

2
𝑚2(𝑅1 + 𝑅2𝐶𝜃2)

2𝜃1
2̇ +

1

2
𝑚2𝑅2

2𝜃2
2̇ +

1

2
𝐽2𝜃2

2̇ 
(8) 

Calculation of the potential energy of the system 

The movement of the base is restricted to a rotational movement in the horizontal plane, 

so its center of mass does not present a change in height. 

 𝑈 = 𝑈1 + 𝑈2 
𝑈1 = 𝑚1𝐺ℎ = 𝑚1𝐺(0) = 0 
𝑈2 = 𝑚2𝐺ℎ = 𝑚2𝐺𝑅2𝑠𝑖𝑛𝜃2 
𝑈 = 𝑈2 = 𝑚2𝐺𝑅2𝑠𝑖𝑛𝜃2 

(9) 

This system only stores gravitational potential energy in the lifting turret component. 

Lagrangian calculus 

The Lagrangian is formed from the sum of the total kinetic and potential energies. 
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 𝐿 = 𝐾 − 𝑈 

𝐿 =
1

2
𝐽1𝜃1

2̇ +
1

2
𝑚2((𝑅1 + 𝑅2𝐶𝜃2)

2𝜃1
2̇ + 𝑅2

2𝜃2
2̇) +

1

2
𝐽2𝜃2

2̇ −𝑚2𝑅2𝐺𝑆𝜃2 

(10) 

From this Lagrangian, the system of equations of motion is given by: 

 𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜃
= 𝜏𝑖 

(11) 

Solve the equations for each degree of freedom 

 𝜕𝐿

𝜕𝜃1̇
−
𝜕𝐿

𝜕𝜃1
= 𝜏1 = (𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝜃2)

2)𝜃1̈ −𝑚2(𝑅1 + 𝑅2𝐶𝜃2)
2𝜃1̇ 

(12) 

 

 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃2̇
−
𝜕𝐿

𝜕𝜃2
= 𝜏2

= (𝑚2𝑅2
2 + 𝐽2)𝜃2̈ −𝑚2𝑅2𝑆𝜃2(𝑅1 + 𝑅2𝐶𝜃2)𝜃1

2̇ +𝑚2𝑅2𝐺𝐶𝜃2 

(13) 

After developing these steps we get the Lagrange equation: 

 𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐾(𝜃) = 𝜏 (14) 

With 

 
𝑀(𝜃) = (

𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝜃2)
2 0

0 𝑚2𝑅2
2 + 𝐽2

) 
(15) 

 

 
𝐶(𝜃, �̇�) = (

−𝑚2(𝑅1 + 𝑅2𝐶𝜃2) 0

𝑚2𝑅2𝑆𝜃2(𝑅1 + 𝑅2𝐶𝜃2)𝜃1̇ 0
) 

(16) 

 

 
𝐾(𝜃) = (

0
𝑚2𝐺𝑅2𝐶𝜃2

) 
(17) 

Clearing the system of equations is:𝜃�̈� 

 
𝜃1̈ = −

𝐶11
𝑀 11

𝜃1̇ +
𝜏1
𝑀11

 
(18) 

 

 
𝜃2̈ = −

𝐶21
𝑀22

𝜃1̇ −
𝐾2
𝑀22

+
𝜏2
𝑀22

 
(19) 

A change of variables is made to organize the system in state-space representation: 

 𝑥 = [𝜃1 𝜃1̇ 𝜃2 𝜃2̇]
𝑇 

𝑥1 = 𝜃1 𝑥2 = 𝜃1̇ 𝑥3 = 𝜃2 𝑥4 = 𝜃2̇ 

(20) 

State variables are replaced to form a fourth-order system. 
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 𝑥1̇ = 𝑥2\ 

𝑥2̇ = −
𝐶11
𝑀 11

𝑥2 +
𝜏1
𝑀11

 

𝑥3̇ = 𝑥4 

𝑥4̇ = −
𝐶21
𝑀22

𝑥2 −
𝐾2
𝑀22

+
𝜏2
𝑀22

 

(21) 

The system is then written in terms of the state variables x: 

 𝑥1̇ = 𝑥2 

𝑥2̇ = −
−𝑚2(𝑅1 + 𝑅2𝐶𝑥3)𝑥2
𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)2

+
𝜏1

𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)2
 

𝑥3̇ = 𝑥4 

𝑥4̇ = −
𝑚2𝑅2𝑆𝑥3(𝑅1 + 𝑅2𝐶𝑥3)𝑥2

2

𝑚2𝑅2
2 + 𝐽2

+
−𝑚2𝐺𝑅2𝐶𝑥3 + 𝜏2

𝑚2𝑅2
2 + 𝐽2

 

(22) 

Stability analysis 

For the autonomous system described in 22, it is proposed to analyze its stability using 

the Lyapunov stability criterion. 

First, system equilibrium points without inputs are sought. So for the condition you 

have:�̇� = 0 

 𝑥1 = 0 
𝑥2 = 0 

𝑥3 = 𝜋/2 , 3𝜋/2… 
𝑥4 = 0 

(23) 

The variable can have any value and the system will remain in the same state for any 

future time. Physically it is understood that the mechanical assembly of the base remains in a 

horizontal plane and at any initial angle will remain the same if it does not receive any 

stimulus.𝑥1𝜃1 

Existence and uniqueness 

To evaluate the stability of the system, the existence and uniqueness of the system must 

be ensured, that is, the system must be Lipschitz. For the system to be Lipschitz there must 

exist a constant L such that:�̇� = 𝐴(𝑡)𝑥 + 𝑔(𝑡) 

 ||𝐴(𝑡)|| ≤ 𝐿 (24) 

Where A(t) The matrix A of the system: 

 

𝐴(𝑡) =

(

 
 
 

0 1 0 0

0 −
𝐶11
𝑀11

0 0

0 0 0 1

0 −
𝐶21
𝑀22

0 0
)

 
 
 

 

(25) 

The infinite norm for a matrix is: 
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 ||𝐴||
∞
= 𝑚𝑎𝑥𝑖Σ𝑗=1

𝑛 |𝑎𝑖𝑗| (26) 

Thus, the infinite norm of matrix A is: 

 
||𝐴||

∞
= 𝑚𝑎𝑥 [1, |−

𝐶11
𝑀11

| , 1, |−
𝐶21
𝑀22

|] 
(27) 

Analyzing the components of the matrix and taking into account that the term is 

positive, while the term is negative, that its numerators are always positive, it is concluded that 

the maximum term is in row 2, therefore, the constant −𝐶11 − 𝐶21L exists if the system is 

locally Lipschitz: 

 
|
𝑚2(𝑅1 + 𝑅2𝐶𝑥3)𝑥2
𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)2

| ≤ 𝐿 

|𝑚2(𝑅1 + 𝑅2𝐶𝑥3)𝑥2| ≤ 𝐿|𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)
2| 

(28) 

The system can take different values for state variables and the constant 𝑥2, 𝑥3L still 

exists. That is, for any value between and inequality is met. Since the state variable represents 

the angular velocity of the weapon lift, an operating value range can be defined for this variable, 

such that the system can have a local dimension that depends on , with a constant 

value:𝑥302𝜋𝑥2𝑎𝑥2 

 
|
𝑚2(𝑅1 + 𝑅2𝐶𝑥3)𝑥2
𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)2

| ≤ 𝑎 
(29) 

With this it can be confirmed that the system is locally Lipschitz. 

The system is globally Lipschitz if the state variables tend to infinity and the infinite 

norm of A has a limit: 

 
lim
𝑥→∞

||𝐴|| = lim
𝑥→∞

|
𝑚2(𝑅1 + 𝑅2𝐶𝑥3)𝑥2
𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)2

| =→ ∞ 
(30) 

The variable tends to infinity, therefore system is not globally Lipschitz.𝑥2 

Lyapunov direct method 

According to Lyapunov's stability theorem [5], the system is stable at an equilibrium 

point at the origin if there exists a continuously differentiable function such that:𝑉(𝑥):𝐷 → 𝑅𝑛 

 𝑉(0) = 0 
𝑉(𝑥) > 0 𝑒𝑛 𝐷/[0] 
�̇�(𝑥) ≤ 0 𝑒𝑛 𝐷 

(31) 

Furthermore if , then the origin is asymptotically stable.�̇�(𝑥) < 0 𝑒𝑛 𝐷/[0]𝑥 = 0 

We then proceed to look for a suitable Lyapunov function. Remembering that this 

function must be continuously differentiable and defined in a domain containing the origin, it 

is proposed to use the energy equation as a Lyapunov candidate function. Using equations 8 

and 9 the total energy equation is 𝐸𝑇formed: 
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 𝐸𝑇 = 𝐾 + 𝑈 

𝐸𝑇 =
1

2
𝐽1𝜃1

2̇ +
1

2
𝑚2((𝑅1 + 𝑅2𝐶𝜃2)

2𝜃1
2̇ + 𝑅2

2𝜃2
2̇) +

1

2
𝐽2𝜃2

2̇

+𝑚2𝑅2𝐺𝑆𝜃2 

(32) 

In terms of the Lyapunov equation is:𝑥 

 
𝑉(𝑥) =

1

2
(𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)

2)𝑥2
2 +

1

2
(𝑚2𝑅2

2 + 𝐽2)𝑥4
2

+𝑚2𝑅2𝐺𝑆𝑥3 

(33) 

You can check the conditions set in 31: 

 𝑉(0) = 0 

𝑉(0) =
1

2
(𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶0)

2)02 +
1

2
(𝑚2𝑅2

2 + 𝐽2)0
2 +𝑚2𝑅2𝐺𝑆0

= 0 

(34) 

 

 𝑉(𝑥) > 0 

𝑉(𝑥) =
1

2
(𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)

2)𝑥2
2 +

1

2
(𝑚2𝑅2

2 + 𝐽2)𝑥4
2 +𝑚2𝑅2𝐺𝑆𝑥3

> 0 

(35) 

The state variables in quadratic function guarantee that the function is greater than zero. 

The term of the potential energy remains positive if R1 > R2, which is the case even if it were 

not, would remain positive within the values of .𝑥3 = [𝜋, 2𝜋] 

It is now verified if along the trajectories of is less than or equal to zero.�̇�(𝑥)𝑓(𝑥) 

 �̇�(𝑥) ≤ 0 
�̇�(𝑥) = (𝐽1 +𝑚2(𝑅1 + 𝑅2𝐶𝑥3)

2)𝑥2𝑥2̇ + (𝑚2𝑅2
2 + 𝐽2)𝑥4𝑥4̇ +𝑚2𝑅2𝐺𝐶𝑥3𝑥3̇

≤ 0 

(36) 

 

 �̇�(𝑥) = 2𝑚2𝑅2𝑆𝑥3(𝑅1 + 𝑅2𝐶𝑥3)(−𝑥2
3 + 𝑥2

2) + 𝑚2𝑅2𝐺𝑥4𝐶𝑥3 < 0 (37) 

The inequality is fulfilled since it is always positive, since for this specific model 
(𝑅1 + 𝑅2𝐶𝑥3)R1 > R2 and the term will always be negative. Again, the term of potential 

energy establishes a limit at which inequality is ensured since it is less than zero when, 

however, it is possible that the term of the derivative of kinetic energy is greater than that of 

potential energy making it less than zero. Under these conditions it can be concluded that the 

system is asymptotically stable.(−𝑥2
3 + 𝑥2

2)𝑥3 = [𝜋/2,3𝜋/2]�̇�(𝑥) 

Conclusions 

The Denavit-Hartenberg parameters and the Euler-Lagrange formalism allow a 

dynamic model of the turret to be built quickly and easily, which in this case results in a 

mathematical model with the rotation angles of each joint and .𝜃1𝜃2 

The obtained model is rewritten in state variables to facilitate stability analysis. The 

equilibrium points obtained are easily interpreted as the resting state of the turret.  
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The method used to perform the stability analysis indicates as a result that the system 

must have operating conditions to ensure its stability around the equilibrium point. These 

conditions are operating limits for some variables. The Lipschitz constant L  depends directly 

on the variable that is the speed of rotation of the base of the turret, for the constant L to exist 

𝑥2 an operating limit speed must be defined, which makes sense because the physical system 

cannot allow an infinite speed.  

The Lyapunov stability criterion also defines operating limits for this particular system 

under the conditions set out in equations 35 and 36: and for small velocities since the terms of 

and also depend on the variables and . The system is asymptotically stable under these 

conditions, i.e. the system tends to the equilibrium point as time tends to infinity [5]. This gives 

an indication of a possible controller design suitable for the nonlinear system within a defined 

region around the equilibrium points.𝑥3 = [𝜋, 2𝜋]𝑥3 = [𝜋/2,3𝜋/2]𝑉(𝑥)�̇�(𝑥)𝑥2𝑥4 
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