EXTRA CORPOREAL MEMBRANE OXYGENATION- A LIFE SAVER ## Mr. M. Raghavendran, Mrs. S. Andal, Mr. Shahanwaj Khan, Mr. Alan. V. Joseph, Ms. Sarita Baghel Asso. Prof and HOD, Department of Medical Surgical Nursing, Faculty of Nursing, Rama University, Mandhana, Kanpur, U.P. India Maitri College of Nursing, CG. ### Abstract: A type of supportive measure where an external artificial circulator carries a deoxygenated blood from the patient to an oxygenator a gas exchange device in which the gas exchange takes place. ECMO was developed gradually from cardiopulmonary by – pass. Types of ECMO is said to be two types they are Veno-Venous ECMO and Veno-Arterial ECMO. Veno-Venous ECMO was used only for supporting the lungs and Veno – Arterial ECMO was used for supporting both the lungs and heart. In both the cases blood is withdraw from venous and goes to machine for purifying. In veno arterial blood is returned directly to the aorta and goes to the systemic circulation. At the same time in veno venous after oxygenation the blood is returned to right atrium and circulates in systemic circulation. Keywords: ECMO, Veno-Arterial ECMO, Veno-Venous ECMO ### **Introduction:** It is a type of supportive measure where an external artificial circulator carries a deoxygenated blood from the patient to an oxygenator a gas exchange device in which the gas exchange takes place. The deoxygenated blood gets oxygen and turns to oxygenated blood and goes back to the circulation. The blood can be taken out of vessels with the help of centrifugal or roller pump¹. ECMO was developed gradually from cardiopulmonary by - pass ### **Types** ECMO is said to be two types they are Veno-Venous ECMO and Veno-Arterial ECMO ### Veno-Venous ECMO This type of ECMO was used only for supporting the lungs. If a patient is having respiratory failure for reducing the workload of lungs or to compensate the lung function this type of ECMO is used. In this type deoxygenated blood is withdrawn from major veins and goes to oxygenator. After oxygenation the blood is returned to right atrium and circulates in systemic circulation. This type also enhances the oxygen level by reducing the amount of deoxygenated blood passing through the lungs and also removes carbondioxide from patient's blood. The oxygen regulation by the ECMO circuit is based on the pump flow respective to cardiac output. ### <u>Veno – Arterial ECMO</u> This type of ECMO was used for supporting both the lungs and heart. If a patient is having cardiogenic shock to compensate the lung and heart function this type of ECMO is used. In this type deoxygenated blood is withdrawn from major veins and goes to oxygenator. After oxygenation the blood is returned directly to the aorta and goes to the systemic circulation.² In this type, the oxygenated blood after the gas exchange is directly transport to the arterial circulation helps to achieve the partial oxygen level. The changing flow rate of blood from the ECMO will not affect the partial oxygen level and malfunction of this circuit will leads to cardiac arrest because the ECMO flow rate is the patients cardiac ^{output}. ### **Indications:** Pulmonary Problems Respiratory Failure **ARDS** Pneumonia Asthma Post lung transplant Lung contusion Cardiac Problems: Post cardiac arrest Pulmonary embolus Drug Overdose Drug Overdose Post cardiac surgery Cardiogenic Shock ### **Contra Indications:** Severe neurological condition Cirrhosis of liver with ascites History of variceal bleeding Human Immuno Deficiency Virus Terminal Malignancy Severe Left ventricular Failure Cardiac Arrest Aortic Dissection Multiple organ Failure Peripheral Vascular Disease ### <u>Differentiation between Veno-Venous ECMO</u> and Veno – Arterial ECMO #### Veno-Venous ECMO Veno – Arterial ECMO Provides Respiratory Provides support for both respiratory and cardiac Support Blood withdrawal from Blood withdrawal from venous circulation venous circulation and and back to venous circulation back to arterial circulation Cardiac Affects cardiac output by output changing the outflow affected Haemodynamic instability Haemodynamic instability will be less will be more ### **ECMO Machine** ECMO machine contains the following - 1. Cannula - Arterial Kits 50cm Medtronic Biomedicus cannulae: sizes: 19 and 21F - Venous Kits 150 cm Medtronic Biomedicus cannulae: sizes: 19, 23 and 27 - Hand crank - 3. Brackets for Rotaflow oxygenator / pump - 4. Oxygenator which acts like lungs - 5. Sensor which senses the oxygen level and blood flow in the body - 6. Centrifugal pump helps in blood rotation - 7. Pump Console controls the blood flow rate and speed - 8. Heater/ Cooler Maintains thermoregulation ### Management: *Initiation of ECMO*: - Check blood clotting time - Oxygen line to be connected to oxygenator - Circuit will be managed with vaccum - Securing the access lines and return lines of blood - Heater or cooler hoses and oxygen flow tubing is not obstructed by feet, bed etc - Never allow the circuit to have contact with alcohol or organic solvents ### Respiratory Management: Respiratory parameters has to be maintained and to improve the oxygen. The parameters are fractionated oxygen above 0.7, partial expiratory end pressure below 15 cm water and the respiratory rate as below 10 bpm.³ Pump Flow Rate: In Veno – Venous ECMO: Two thirds of patients cardiac output or minimum 50% of patient's cardiac output In Veno – Arterial ECMO: 2.1 to 2.4 L/min Temperature: Temperature should be kept at body temperature (37degrees) Anti Coagulation: Low dose heparin is used to prevent the blood from clotting although the tubing's of circuit has anticoagulant lining. # Investigations for Patients on ECMO: Chest X ray Blood Test - Electrolytes, LFT, RFT, FBS Clotting Time, Bleeding time, APTT Blood Culture, urine culture ### **Complications:** Hypoxia Hypercapnia # Social Science Journal Bleeding Hemolysis **Emergency Complications** Pump failure Cardiac Arrest Decannulation Air Embolism Circuit Rupture ### **Nursing Management:** The Nurse has to perform safety checks like Checking flow rate Secure oxygen flow to oxygenator Never allow the patient alone All the vital signs and hemodynamic monitoring to be checked Lower extremities to be checked for temperature, colour, pulse and capillary refill Observe for oozing of blood from cannulas Sterile dressing to be maintained at cannula sites Input and out put chart to be maintained Urine to be checked for hematuria Patient should be given care in supine position with elevation of head by 30 degrees Pressure points to be checked frequently and anticipate for pressure ulcer Pupillary and neurological assessment to be done Patient should be moved under proper supervision ### **Management of Complications:** Hypoxia and Hypercapnia - ➤ Increase the pump flow - ➤ Increase ventilation - ➤ Cool patient to 35 deg - Muscle relaxants can be administered ### Bleeding - > Stop heparin. Heparin coated circuits can run for couple days without heparin - Find out the cause - Administer Platelets, packed cells or Fresh Frozen Plasma ### Cardiac Arrest - ➤ Call for Help/ Code Blue - > Cardio Pulmonary Resuscitation ### Air Embolism - Clamp arterial return line - > Stopping the pump - > Keep the patient head down - ➤ Increase ventilation & Inotropic drugs - ➤ Volume - ➤ If embolus entered patient arterial system (VA) - > hypothermia' - ➤ Barbiturates, steroids, mannitol, lignocaine - ➤ If embolus entered venous system (VV) - Aspiration of right heart using existing ### **Weaning ECMO** Veno-Venous ECMO Maintain the flow rate of oxygen Restore the patient with full ventilation Slowly Turn Off oxygen to oxygenator # Social Science Journal Check the patient for stabilization and then decannulate Veno – Arterial ECMO Decrease the pump flow and assess the ventricular function Turn off the oxygen slowly and assess the oxygen level If oxygen is good and carbon di oxide is managed by ventilation then decannulation can be considered⁴ ### conclusion ECMO was developed gradually from cardiopulmonary by – pass. It is a type of supportive measure where an external artificial circulator carries a deoxygenated blood from the patient to an oxygenator a gas exchange device in which the gas exchange takes place. ECMO is said to be two types they are Veno-Venous ECMO and Veno-Arterial ECMO.ThisCan be a live saving modality for patients with cardiopulmonary instability. ### **Reference List** - 1. Adult Extra Corporeal membrane Oxygenation (ECMO); Policy & Guideline. RPAH 2010 - Extra Corporeal Membrane Oxygenation (ECMO) in the Intensive Care Unit. St Vincent's Hospital Sydney ICU 2010 - 3. European Heart Journal, Vol 26 issue 20. Favourable clinical outcome in patients with cardiogenic shock due to fulminant myocarditis supported by percutaneous extracorporeal membrane oxygenation - Gaffney, A.M., Wildhirt, S.M., Griffin, M.J., Annich, G.M. & Randomski, M.W. (2010). Extracorporeal life support. *BMJ*, 341:982-986.