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ABSTRACT  

Modern IoT systems integrate machine 

learning (ML) technology into edge devices. 

This presents novel technical obstacles in 

order to implement machine learning on 

hardware with limited resources, as well as 

complexities in guaranteeing system security 

and privacy. Previous studies recommend 

using iterative methodologies for the creation 

of IoT devices that use machine learning, since 

this approach may facilitate the development 

process and enhance the likelihood of product 

success. However, these methods primarily 

prioritize established approaches used in other 

conventional software development domains 

and do not cater specifically to the needs of 

machine learning or IoT devices.  

This study aims to analyze and describe the 

engineering procedures and security measures 

used in machine learning-enabled Internet of 

Things (IoT) systems, focusing on the various 

stages of the engineering lifecycle. We 

obtained data from professionals using a 

survey (N=25) and interviews (N=4). It has 

been observed that there is a variation in 

security procedures and engineering 

methodologies across different companies. 

Participants highlighted the financial expenses 

associated with doing security analysis and 

threat modeling, as well as the compromises 

that need to be made in order to meet business 

requirements. Engineers decrease their 

allocation of resources towards security if it is 

not explicitly mandated. Practitioners 

expressed ongoing concerns about the risks of 

intellectual property theft and reverse 

engineering while using machine learning for 

Internet of Things (IoT) devices. Our results 

indicate that it is necessary to do more study in 

order to have a better understanding of the 

trade-offs between engineering cost, 

compliance, and security.  

KEYWORDS Internet of Things, Machine 

Learning, Security and Privacy, Cyber 

Physical Systems, Embedded Systems, 

Software Engineering. 

1. INTRODUCTION  

The Internet of Things (IoT) paradigm 

integrates cyber and physical components, 

connecting devices at the network edge 

(“Things”) to one another and to more 

powerful resources over the network 

(“Internet”) [15]. There are ∼35 billion IoT 

devices worldwide, projected to double by 

2025 [30, 57, 58]. IoT systems can leverage 

machine learning (ML) [38, 39] to make low-

latency intelligent decisions [8, 67]. The 

resulting intelligent IoT systems could 

transform many sectors of the economy [42], 

however, the associated risks are also 

substantial. To minimize the risks, engineers 

should adopt ML methods on resource-

constrained IoT devices in a secure, privacy-

preserving way [16]. 

Despite the increasing importance of 

intelligent IoT systems to consumers, industry, 

and governments, we know relatively little 

about manufacturers’ engineering practices 

[28, 46, 53]. Concerns about engineering 

practices are raised by high profile failures, 

including cyberattacks on waterworks systems 

leading to poisoned water supply [55], 

aggressive data collection practices [4, 48] and 

exploits leading to IoT botnets [1]. 

Researchers have investigated IoT software 

defects [46] and security flaws [12, 18, 20– 23, 

25, 34, 35, 47, 61] from the software 

perspective using program analysis and failure 

analysis. Also, researchers have proposed 

generic models of the secure software 

development life cycle (SDLC) for the 

development of ML models and the 

development of MLenabled edge devices [28, 

53]. However, the challenges of real-world 
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adoption and current industry practices are 

largely unexplored. Our goal is therefore to 

investigate the process of engineering ML-

enabled IoT devices in industry. Our general 

research questions are: What practices does the 

industry follow to develop and manage ML-

based IoT devices? How is security treated in 

industry development life cycles? We 

investigate these questions in a survey (N=25) 

and interviews (N=4) with industry 

practitioners. 

Among other findings, our survey respondents 

and interview subjects emphasized tradeoffs 

between engineering cost and quality. Market 

forces reduce the quality and security of IoT 

products. As one interview subject (P2) said,“it 

is a question of if it [better security] will be 

accepted by the market”. Larger companies 

benefit from economies of scale, with in-house 

ML and security specialists to support IoT 

products. We also learned that businesses may 

give up some marketable functionality in order 

to reduce their risk, e.g., not storing user data 

on IoT devices. Across several industry 

sectors, another common worry is the reverse 

engineering of proprietary ML models. 

II.BACKGROUND 

 This research is motivated by an industry 

trend towards computing systems with 

intelligent components at the network edge, 

and the associated security and privacy 

implications. Definitions of an “IoT device” 

vary [56]; we consider devices with sensors 

and/or actuators, a network connection, and 

limited resources in memory, power, and 

computation [33, 66]. Resource-constrained 

IoT systems combine sensing and 

communication capabilities with low cost [50, 

70]. 

Engineering process for IoT: Engineering 

processes for IoT systems are complex 

because IoT systems are inherently distributed 

and resource-constrained, and have physical 

components alongside virtual ones [68]. Figure 

1 depicts a generic engineering lifecycle for 

ML-based IoT systems, which we used to 

design our study. This lifecycle combines 

several existing works [2, 28, 53]. In this 

model, IoT engineering is a five-step iterative 

process: 

Specification: The purpose of the product is 

defined, perhaps constraining the hardware 

and software components. Design: Decisions 

are made about system architecture, 

frameworks are selected, and evaluation 

techniques are chosen. Development: Design 

decisions are implemented using development 

frameworks. The ML model is optimized by 

tuning hyperparameters, reducing the 

computational complexity of the model (eg: 

deep learning-based models), and 

manipulating network blocks [26, 40]. The 

implementation targets a hardware profile but 

not specific devices, to promote portability. 

Deployment: The developed solution is 

deployed to the target hardware. Deployment-

time optimizations such as pruning help fit the 

model into the IoT device constraints [39]. 

Optimization strategies are standardized, but 

the parameters vary based on the available 

resources of the target hardware [53]. 

Audit: Here the software components have 

been deployed to the hardware components, 

and engineers determine whether the system 

specification is met. Concerns may be raised 

about performance goals, fault tolerance [31, 

59], or security vulnerabilities. Engineers 

consider traditional threat models as well as 

those specific to the use of ML. For example, 

researchers have proposed attacks involving 

corrupted training data [69] or reverse 

engineering a model [49]. 

Security in IoT: Security is a cross-cutting 

concern for engineered systems [51]. Security 

is increasingly incorporated throughout the 

engineering life cycle (Figure 1) [41]. 

However, IoT developers find security 

challenging and complicated [46]. Engineering 

teams feel responsible for security, but often 

lack a formal security process [9, 45, 63]. 

Functionality and deadlines are often 

prioritized over security [14, 24, 43], and 

adding security to resource constrained 

devices penalizes power consumption, latency, 

and throughput [11, 60]. 
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Although this engineering process model for 

ML-based IoT development is a promising 

start, the research community still lacks insight 

into industry practices. This knowledge gap 

hinders our understanding of industry-wide 

problems and challenges towards building and 

maintaining secure ecosystems. This study is a 

step towards filling that gap. 

III.RESEARCH QUESTIONS  

To understand the processes and challenges of 

engineering secure ML-enabled IoT systems, 

we posed five research questions across two 

themes. The first theme explores ML 

engineering in a resource constrained context, 

with implications for IoT system 

trustworthiness (e.g., affecting security and 

privacy). The second theme examines 

cybersecurity practices for these systems. 

Theme 1: Applying machine learning on IoT 

devices  

RQ1: What are the common practices for 

bringing ML to resource constrained edge 

devices? (Process model steps 3a-3d) 

 RQ2: What are the challenges and 

consequences developers face due to resource 

limitations in developing ML software for 

edge devices? (Steps 3a-3d) 

Theme 2: Engineering secure IoT systems  

RQ3: How do engineers incorporate security 

into the IoT engineering process? (Steps 1-5)  

RQ4: How do engineers reason about trust in 

ML-based IoT systems? (Step 4) RQ5: What 

other factors affect security practices in IoT 

engineering? (Steps 1-5) 

IV. METHODOLOGY 

 Given our research questions, we chose an 

exploratory methodology [54] — a mixed 

quantitative and qualitative approach to 

explore a phenomenon and develop new 

research questions. We elicited coarse data 

with a survey, and detailed insights using 

interviews. 

4.1 Survey 

 Instrument design: We designed a ∼10-

minute, 32-question survey instrument aligned 

with our research questions. We drew on 

existing literature for seven demographic 

questions [10, 13], and developed the other 

questions using best practices in survey design 

[29]. The initial set of questions were based on 

our own industry experience working with ML 

on IoT devices, and then refined through 

discussion with practitioners. To test validity 

and length, we administered the survey to two 

practitioners and further refined it based on 

their feedback. 

Survey distribution: Given the specialized 

nature of the engineering security practices 

under consideration, we distributed the survey 

widely: on the public platforms Reddit, Hacker 

News, and Towards AI; through our personal 

networks via Facebook and LinkedIn; and on 

our departmental mailing list. We also asked 

survey respondents to share the link with their 

colleagues (snowball sampling [36]). The 

survey was published in the last week of 

March 2021 and closed after 5 weeks. We 

incentivized survey participation with a 1-in-

50 chance of winning a $50 gift card. 

Analysis method: We analyzed the data using 

reports generated using the Qualtrics platform. 

We examined the data from each question, 

aggregated across all participants. In order to 

have a uniform scale of results, we have 

represented all the data in the survey in terms 

of the percentage of total responses in the 

diagrams for the purpose of visualization. 

 

Figure 1: An engineering lifecycle for machine 

learning-based IoT devices. It combines 

several models including the SDLC [2, 28, 

53]. 

4.2 Interviews 

 Protocol design: We designed our interview 

protocol as an extension of the survey 

questions. We observed survey responses and 
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developed questions around areas where the 

survey respondents disagreed or gave 

unexpected answers. The interview followed a 

semi-structured interview, with 8 planned 

questions to permit a 30-40 minute 

conversation with each subject [27]. To test 

validity and length, we piloted the interview 

protocol with one practitioner. 

Participant recruitment: We recruited 

interviewees from the survey respondent pool. 

Survey respondents had experience in ML and 

IoT engineering, making them good candidates 

for a longer interview. Survey respondents 

could indicate if they were interested in a 

follow up interview, incentivized with a $25 

gift card. We contacted all interested 

respondents, and interviewed any who replied 

and completed the interview consent form. 

Participant privacy: Audio recordings of 

interviews were transcribed by a third-party 

service. We anonymized participant PII (e.g., 

names of people and companies) before 

analysis. 

4.3 Collected 

 data Survey: We received a total of 25 survey 

responses, of which 14 were fully completed. 

Given the few full responses, we also analyzed 

the available data from partial responses. The 

median partial respondent completed 42% of 

the survey. 

Interview: We interviewed 4 experts, with a 

range of positions and professional experience. 

The interviews comprised 140 minutes of 

audio recordings. 

V. RESULTS AND ANALYSIS  

We present results corresponding to our RQs. 

To simplify the presentation, we synthesize 

survey and interview data for each question. 

5.1 Demographics  

Survey respondents (Figure 2) hold bachelor’s 

degrees in computer science, software 

engineering, computer engineering, or 

electrical engineering; work primarily in the 

sectors of consumer electronics (27%), IT & 

telecommunications (22%), automotive (20%), 

and healthcare & biomedical (15%); and 

learned about ML techniques 

 

Figure 2: Demographics of survey 

respondents. 

Table 1: Interview Subjects 

 

from university coursework (41%), self-taught 

(37%), and from corporate training (20%). 

They work at a range of company sizes, from 

under 50 employees (36%) to over 2,000 

(32%). They have a range of experience 

applying ML in software engineering, ∼30% 

more than 5 years and ∼70% fewer. At their 

companies, they reported an almost equal 

distribution of ML deployment experience: 

from initial exploration/prototyping stages to 

“multiple projects” to extensive multi-platform 

experience (Figure 4). 

Interview subjects (Table 1) had a range of job 

roles, and experience in sectors including 

manufacturing, consumer electronics, defense, 

and medical devices. 

5.2 Theme 1: Machine Learning for IoT 

Devices  

RQ1: Common ML practices for IoT. ML 

modeling: ML algorithms are one ingredient of 

next-generation IoT systems. We asked survey 

respondents and interview subjects where their 

models come from. Survey respondents rely 

on academic research, re-using models entirely 

or tailoring them to their company’s needs 
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(Figure 3). Notably, none of the survey 

respondents indicated that they follow product 

line development (i.e., , reuse models from one 

product to the next) for their ML models. P3 

characterized the sources used by his start-up: 

“In the ML world, [if] you don’t read a paper 

every single day, you are in trouble...IEEE 

papers and...we also look at results that come 

out of Google, Facebook, Amazon and 

Microsoft.” 

Companies with deeper expertise also develop 

models internally; P1 said, “[My company’s] 

research team does a lot of research around 

machine learning, and we...use the frameworks 

developed by them.” 

 

Figure 3: Source of ML models in practice. 

ML development: TensorFlow/TF-Lite and 

PyTorch were the most popular modeling 

frameworks; Python and C/C++ were the most 

popular languages. To train and validate 

models, survey respondents follow standard 

practices: splitting training and testing data, 

applying K-fold/cross validation, etc. 

Engineering processes: Our data show that the 

industry movement towards incremental 

development and agile methodologies [41] 

includes IoT systems development. Among 

survey respondents, 48% report using “Agile” 

as their software development process, the 

most popular response. Our interview subjects 

concurred. As interviewee P3 said: 

“We tend to follow the agile flow...2 years ago 

we [were] mostly waterfall, the old-fashioned 

way...now...95% of...[our] programs [are 

agile].” 

 

Figure 4: Survey data on ML maturity, 

software updates, and data collection. 

This adoption includes the Continuous 

Integration/Continuous Deployment (CI/CD) 

approach. Half of the survey respondents said 

their teams incorporate ML models into the 

rest of their IoT systems during CI, 25% said 

“Before deployment”, and only 16% said their 

integration occurred at software release time. 

Interviewee P3 said: 

“At every stage of our Agile flow...[we have a] 

CI/CDbased validation flow...as part of the 

weekly sprints trying to meet accuracy, latency 

and throughput.” 

After IoT device deployment, many survey 

respondents report that they improve the ML 

models in their products by collecting new 

data and sending software updates (Figure 4). 

RQ2: ML challenges and consequences for 

IoT. ML on resourceconstrained devices: IoT 

engineers work within hardware constraints. 

Over 90% of survey respondents said they 

meet constraints by changing the software, not 

the hardware. To meet their resource 

constraints, our survey respondents said they 

use neural network pruning techniques 

including regularization, second-order 

methods, and variational dropout. As they do 

so, survey respondents said they struggle with 

decreased model performance (38%), memory 

constraints (23%), and insufficient expertise 

(23%) (Figure 5). Interviewee P3 went into 

more detail: 

“From a technical perspective, one of the 

biggest problems that we face is the inability 

of standard tools to be able to squash a model 
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into something that fits with a push of a 

button.” 

 

Figure 5: Survey data on ML resource 

constraints. 

Our interview participants went into detail 

about their strategy for estimating ML model 

performance: back-of-the-envelope 

calculations. As P2 said: 

“I prefer Excel sheet because bringing 

emulator to a state that you can perform 

simulation takes time. And also building 

machine learning algorithms takes time. So it’s 

better [to make a] crude estimate...using Excel 

sheet...and then simply prepare ML algorithms 

that simply relies on this crude estimate.” 

Working with customers: P4 noted the 

challenges of ensuring robustness as a 

customer requirement: 

“[Clients] give us the validation data set, but 

not the test data set...Then they used to run the 

inference at their end on the same device and 

validate if it works well on the test data set. 

Even slight changes...distortions...used to give 

bad accuracy...So if your model should be 

robust to such kind of things, then you need to 

have such kind of data in your training data 

set.” 

Edge-Cloud collaboration: Survey respondents 

described different architectures for data 

processing. Two-thirds follow a hybrid 

strategy, with lighter-weight processing on IoT 

devices and heavyweight processing using Fog 

or Cloud systems. Edge-only processing was 

the second most common, and Cloud-only 

processing was rare. When placing 

computation on Edge devices, engineers 

reported working around the resource 

limitations of IoT devices. 

5.3 Theme 2: Secure IoT engineering  

More than half of respondents have 

experienced a security vulnerability in their 

current product. One-third have dealt with 1–3 

CVEs (Common Vulnerabilities and 

Exposures), and one-third with 4 or more. 

Understanding how they incorporate security 

and reason about trust in their engineering 

processes may help reduce CVEs 

RQ3: Incorporating security into IoT 

engineering. Security Analysis: We asked 

survey respondents to describe the processes 

their teams follow for security analysis. Code 

review (42%) and white-box analyses (21%) 

were the primary ways in which security 

checks are realized (Figure 6). Survey 

respondents and interview participants also 

described conducting security reviews and 

creating mitigation plans. Interviewee P3 

discussed integrating security into the ML 

development process: 

“It’s not as if every member in the team is...[a 

security expert, but] they are [generally] aware 

of the pitfalls and needs. But...[we ensure that] 

a few experts are always there in the reviews.” 

For interviewees working in smaller 

companies, security analysis was part of every 

developer’s job. In larger organizations, 

interviewees said that security analysis was 

done by dedicated security teams. However, 

developers are still involved and have some 

familiarity with security analysis methods. 

 

Figure 6: Methods for security analysis. This 

question was accidentally single-response, so 

we suppose the respondents interpreted this as 

primary method 

Threats and threat models: Our subjects said 

that security threat analysis was a common 

part of the development process, but with 

varying priority depending on the company 

size and available resources. Our interviewees 

indicated that the major threat they considered 

was the loss of intellectual property — reverse 
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engineering of their ML models. Interviewee 

P1 said the biggest security challenge they 

face is in-memory re-engineering: “We try to 

mimic scenarios that can breach security...We 

are careful about snoop-out transactions.” At 

P1’s organization the same threat is 

considered: 

“One common area where you can snoop 

things out in hardware is the Memory 

Management Unit...So if your MMU gets 

compromised, then you...have physical 

addresses and you can do whatever you want 

with it. So, secure hardware design become 

critical.” 

By nature, IoT devices interact with humans 

and the physical world. This makes privacy a 

concern for both developers and endusers. 

Interviewee P2 said privacy was the most 

difficult aspect of security analysis, and 

described his company’s approach like this: 

“The privacy, it is the hard problem...it will be 

really visible to the market...We are trying to 

not store any private data that could be...used 

by hacker in any way....we are simply not 

trying to tackle such cases. And from my 

previous work...It was always an issue because 

it is a really hard problem. And it is really easy 

to...lose your name, lose your brand.” 

RQ4: Trust in IoT systems. Our interviewees 

identified trust in researchers, vendors, data, 

and tool chains. As highlighted in Figure 3, 

survey respondents indicated trust in 

researchers through the common adoption of 

research prototypes. Interviewee P3 described 

how his company’s ML model training process 

is dependent on security features provided by 

cloud computing platforms: 

“So in the fully cloud-based solutions we are 

largely dependent on...the goodness of the 

cloud. It’s almost impossible to see what 

Azure, AWS, etc., are doing under the hood. 

So there’s a large level of dependence on their 

security procedures.” 

P3 also noted his trust in development tool 

chains: 

“We...are not doing a whole lot of analysis on 

weakness of...tools like TensorFlow. If 

TensorFlow...has a security hole, there is not 

much we do about it. ... [We] have wrappers 

that ensure there is some levels of encryption, 

unhackability before it...goes on to the 

eventual edge IoT device. But if you were to 

question the IDEs and tools chains having 

security bugs, there is nothing we can do about 

it.” 

P1 pointed out his assumptions of trustworthy 

data:  

“We have to ensure that the [training] data...is 

from a trusted source, otherwise it becomes a 

nightmare.” 

RQ5: Other factors that affect IoT 

engineering.  

Process requirements and regulations: During 

our survey we asked participants about 

restrictions on their engineering processes and 

products (Table 2). About half comply only 

with general quality processes (e.g., P3: “We 

are an ISO 9001:2015 company. We rigorously 

follow the ISO standards.”). Other survey 

respondents comply with governmental safety 

and security regulations (26%), and with 

privacy regulations like GDPR and HIPAA 

(22%). In P1’s organization, they prefer to 

work with metadata instead of data because of 

HIPAA requirements: 

“Once you start working with meta-data, then 

you don’t really need...any private 

information...so, it becomes much easier.” 

P1 expanded on the difficulties of regulatory 

compliance:  

“For example, anytime I’m working with the 

medical data, that becomes a very, very tricky 

situation...[you must] set up proper working 

environment and...ensure that the data is not 

leaving your trusted network...not just personal 

data, but also [its] trends” 

Table 2: Survey data on process requirements 

and regulations 
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Engineering Cost: Several of our subjects 

pointed out a balance between security and 

engineering cost. A survey respondent wrote 

that the most challenging aspect is: 

“Addressing vulnerabilities properly...within 

the project budget...[and] supporting 

cryptographic functionality for encryption, 

storage, data transmission, and key/certificate 

management.” 

Interviewee P2 observed that user visibility 

may justify engineering costs: “ 

“First of all you must decide if security is 

required. If you push security to a level that is 

hard to maintain, and it is adding significant 

value to the Bill Of Materials cost, then it is a 

question if it will be accepted by the market. I 

believe, the argument about security is if it will 

be visible to the user.” 

Interviewee P1 observed that his company 

invests security resources non-uniformly, with 

less effort in analyzing software that they 

release open-source: 

“When we do an open-source release, we don’t 

worry much about it...any shortcomings we get 

notified very quickly by the open-source 

community and we can fix it. Of course, it is 

not a good thing to release something insecure 

to open-source which is not adequately tested 

or verified...We mainly ensure that previous 

occurrences of security breaches are tested and 

we make it part of the design process.” 

VI. DISCUSSION  

6.1 Comparison to prior findings  

Our findings overlapped with prior knowledge 

in many aspects. In terms of development 

tools, our participants followed industrywide 

practices such as using ML frameworks like 

TensorFlow and PyTorch and development 

toolchains based on the Visual Studio/- Code 

IDEs. Our participants follow iterative 

development processes. The use of hybrid 

Edge-Cloud architectures is widespread. 

Power, memory constraints, and computational 

constraints are known to be major challenges 

within IoT systems. Our participants are aware 

of security issues such as data poisoning. 

The main difference between the research 

literature and our findings is the discussion of 

engineering cost. Our participants — perhaps 

especially those in consumer electronics — 

reduce security for cheaper production costs. 

Similarly, there are many interesting methods 

of emulation, load-balancing, and system 

validation proposed in the research literature, 

but most respondents’ organizations do not use 

these methods. Unlike researchers’ goals of 

unbreakable systems, our subjects balance how 

much security is possible (relative to its 

engineering cost) and required (relative to 

market demand). The research literature 

generally does not consider the engineering 

cost of proposed techniques. Lastly, the many 

sources of unverified trust — open-source 

code, academic research, and development 

toolchains — was greater than what we 

understood in the literature. 

6.2 Advice for practitioners  

Our study revealed a significant gap between 

how the academic community and industry 

perceive IoT security. This suggests potential 

value in cybersecurity workforce development 

[7]. Outside academia, government guidelines 

(e.g., from US-NIST [5] and EUENISA [3]) 

describe secure development lifecycles. NIST 

[6] recommends a thorough study on the 

customers, users, expected use cases, security 

risks, and goals during planning, execution, 

and post-deployment. Our subjects did not 

describe such a process.  

Given the success of automated code analysis 

methods such as static analysis, black-box and 

grey-box fuzzing in identifying system 

vulnerabilities in IT software, we were 

surprised by practitioners’ continued emphasis 

on code review and white-box analysis in their 

IoT systems. We recommend practitioners 

integrate such methods into their product 

development process [44]. 
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6.3 Future work for researchers  

Based on the challenges faced by the 

practitioners we studied, we suggest three 

directions for future research. First, the IoT 

domain is characterized by tight profit margins 

and low-cost parts. Many of our research 

subjects were therefore concerned about the 

engineering cost of securing IoT devices. It 

would be helpful for researchers to offer 

engineering cost-aware security processes 

suited to the constraints of IoT systems 

engineering, and practical measurements of 

this cost. Past research works primarily focus 

on trade-offs between security and resource 

costs, such as operation delay and energy [19, 

65]. Our work identifies the importance of 

considering engineering costs, not just the 

runtime implications. Our work also 

complements ongoing research to help 

consumers understand how security affects the 

cost of commodity IoT devices [32]. 

Second, practitioners leverage open science 

and open-source software for their ML 

modeling and their development toolchains. 

This accelerates development, but introduces 

substantial risk. For ML, we recommend that 

ML researchers carefully document their 

research prototypes and the limitations of their 

work, and that they can achieve broader 

impact by participating in community efforts 

to develop exemplary ML models (e.g., 

TorchVision [52] and the TensorFlow Model 

Garden [62]). Additional studies of how best to 

reproduce and transfer ML knowledge will be 

helpful [13, 17, 37]. More broadly, given the 

reliance of our participants on open-source 

tools, trustworthy software supply chains will 

improve the safety and security of IoT systems 

[64]. 

Third, the difficulties experienced by 

practitioners in following the compliance 

restrictions and regulations identified in Table 

2 poses a potential research area. For example, 

researchers could study the impact of security 

compliance on security outcomes of IoT 

applications, and the tradeoff with engineering 

cost. 

VII. THREATS TO VALIDITY  

Construct validity: Our survey instrument 

and interview protocol were intended as direct 

measures of the constructs of interest (i.e., 

engineering practices), and we used pilot 

studies as a check. 

Internal validity: Our study reports on 

practices without inferences about cause and 

effect, so internal validity is not a concern. 

External validity: The primary limitation of 

our study is in its external validity, i.e., 

generalizability. Our goal was to describe 

current practices in IoT engineering, focused 

on machine learning and cybersecurity. As is 

common with studies of this kind, we used a 

human-subjects method with a self-report 

design, which assumes the respondents were 

truthful. Beyond the trustworthiness of our 

data, we emphasize that we had relatively few 

survey responses (N=25). We cannot claim 

saturation; our results are likely not 

representative of the entire state of practice. In 

addition, 40.9% of the survey respondents 

identified as students for their current position, 

and their responses might not reflect the 

practices in the industry. As mitigating factors, 

our survey reached participants from several 

industry sectors, and our interview subjects 

included experts with a long tenure in industry 

and experience at several companies. 

8 CONCLUSION  

This project aimed to expand the current 

knowledge of IoT engineering methods in the 

areas of machine learning and cybersecurity. 

Based on our study and interviews, we have 

discovered that engineers encounter a 

significant obstacle while developing an IoT 

product: the need to effectively manage 

engineering cost, performance, trust, and 

security. Our research revealed that 

corporations tend to rely on open-source and 

academic materials without verifying their 

credibility. They even go to the extent of 

integrating academic prototypes of machine 

learning algorithms into their Internet of 

Things (IoT) products. The investment in 

cybersecurity is determined by factors like as 

available resources, engineering expenses, and 

organizational goals. In fact, one firm 
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specifically depends on the open-source 

community to identify vulnerabilities in their 

software. Practitioners have yet to incorporate 

academic research in engineering methods and 

government recommendations that might 

potentially solve some of their issues. We 

strongly advise software engineering and 

cybersecurity researchers to include 

engineering cost concerns into their work in 

the future, since this was a worry expressed by 

a significant number of our study participants. 
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