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Abstract 

The study focuses on a Hepatitis B infection model that includes saturation response, 

contamination delay, and cure of the infected cells. We examine the impact of time delay on the 

two equilibrium points' stability, the Hopf bifurcation condition, and permanence. The 

analytical results are confirmed by means of numerical simulations. 
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1. Introduction: 

The hepatitis B virus (HBV) is one of the most hazardous viruses in the world as it may lead to 

liver cancer and cirrhosis. Persistent HBV infection can be exacerbated by a weak immune 

response or a cellular resistance. The primary way that HBV is transmitted is through contact 

with bodily fluids that contain blood or infectious blood. Eighty-seven to ninety percent of those 

infected with HBV either become immune to the virus or become persistent carriers. 

Now a ketal. Propose dibasic mathematical model to analyses the HBV dynamics. Wangetal. 

Studied the intra cellular phase of the life cycle of virus taking the assumption that production 

of HBV lags behind the infection of a hepa tocyte by a delay . Are version rate constant was 

given by Lewinetal. and acytokine-induced “curing” of infected cells was discussed by Guidotti 

et al. for an HBV infection. Models with delays are also introduced by Abdelhadi Abta et al. 

and Sudipa Chauhan et al. to study the time between the entry of a viral particle into a target 

cell and the production of new virus particles. 

In most HBV models, the rate of infection for both the virus V and the uninfected target cells Sh 

is bilinear. However, the actual incidence rates may not be precisely linear in each variable 

across the whole range of V and Sh. For example, a smaller amount of linear response in V may 

occur when there is saturation at high virus concentration due to a high infectious fraction. As a 

result, it is safe to assume that the HBV infection model's infection rate in saturated mass action 

is 
1

p
S v

h
q

v



+
where p and q are constants. 

In this paper we encompass a time-lag in HBV model and a saturation response of the infection 

rate (p=q=1) .The model is given by  
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 
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 (1) 

Where ( )hS t = concentration of the uninfected hepatocytes 

( )I t =Concentration of actively infected hepatocytes 

( )V t =Concentration of free pathogens 

A= constant rate for production of uncontaminated hepatocytes 

 =Death rate of uninfected hepatocytes 

 = Infection rate constant 

 =Half saturation constant of contamination 

P=productivity rate of contaminated cells 

 = rate of clearance of pathogen particle 

/p c =  Pathogen particle produced by each actively infected hepatocyte during its life time. 

2. BASIC PROPERTIES 

Let  ( )3
, 0 ,C C R= − be the Banach space of continuous functions, mapping the 

interval , 0− into 
3

R amidst topology of uniform convergence, that is for C
+

 the norm of 

 is defined as  sup ( ) , ( ) , ( )
0 1 2 3

.
r

      =
−   The positive cone of C is defined 

by  ( )3
, 0 , .C C R

+
= − +  

The initial conditions of system (1) are 

( ) ( ) ( ) ( ) ( ) ( ), ,
1 2 3

S I V
h

        = = =                                                            (2) 
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( )   3
 R , , , 0, 1, 2,3 0, 0, 0, , 0 , 0, 0, 0

1 2 3 1 2 3 1 1 1
where x x x x ii        =  =     −   +

 

2.1 Positivity and boundedness of solutions 

Under the above initial conditions every solutions of system (1)are non-negative and  an M >0 

 every solution satisfies ( ) , ( ) , ( )S t M I t M V t M
h

   following sufficiently large t time. 

Define G= ( ) , , / 0, 0, 0
1 2 3 1 2 3

.C Sh      
+

=       

Let us verify that ( )S t
h is non-negative, and let us consider the contrary that is, let 0

1
t  is the 

first time such that ( ) 0
1

S t
h

= .  We have ( )'
0

1
S t A

h
=  from the first equation of (1).Which 

says ( )( ) 0 for t ,
1 1

S t t t
h

  − where  is an arbitrary small non-negative constant that leads 

to contradiction it follows that ( )hS t is always positive. 

Determining ( ) 0 V( ) 0 0 we have
1 1 1

 and ,I t t t     

( )( ) ( )( )
( ) ( )1

( ) exp (0) exp 0                 (3)
1 1

0 1 ( )

t S t V
h

I t c t I c d
v

  
     

  

−
= − + − + − + − 

+ −

 
      

 

( ) ( )  
1

( ) = exp 0 exp 0                                                                    (4)
1 1

0

t

V t t V pI d    − + − 
 

    
 

Let  0, .
1
t T We have    0, 0,T T T −    .As we’ve 

( ) ( ) ( ) ( ) ( ) ( ), ,
1 2 3

S I V
h

        = = =  and through (4) we conclude 

that ( )  0, 0, .
1
tV Tt    

In accordance with ( )( ), ( )S I andV
h
   and from equation (3) we conclude that 

( )( ), ( )S I andV
h
    are all positive on the interval 0, .T  

Now let us prove that system is bounded that is an M>0  for any non-negative solution of 

( )( ), ( )S I andV
h
     of system (1),I(t)<M,V(t)<M large t. 

Set ( )( ) ( )U t S t I t
h

= +  

therefore ( ) U(t)=A- ( )S t cI t
h

 −  
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( )( )A-h ( )S t I t
h

 + where  h=min , .c  

By standard comparison theorem we dissolve that ( )( )lim sup ( )
A

S t I tt h
h

+ →  

Therefore we get the boundedness of U (t), i.e 0
2

t  and ( )0  U  t>t
1 1 2.

M t M for    

Then I (t) has an eventually upper bound, let the maximum is an M i.e 

lim sup ( )

dV Ap
pI V V

dt h

Ap
V tt

h

 



= −  −

→

 

Let us define ( ) ( ) ( ) ( / ) ( )W t S t I t c np V t
h

= + + for n>>1. 

Taking the time derivative along the system (1)  

( 1)
( ) ( ) ( )

dW c n
A S t I t V t

h
dt n

 
−

= − − −  

 ( 1)
( ) where =min , ,

dW c n
A W t

dt n
   

−
= −  

By positivity of the solutions it follows that ( ) .
dW

W t A
dt

+   

Using a theorem in differential inequalities we acquire 

( )( ) (0), (0), (0)
A A t

W t W S I V e
h



 

−
 + −

 
 
 

 

Therefore lim sup ( ) .
A

W tt


→ Thus , Sh(t).I(t),V(t) are all bounded for t>0,that conclude the 

proof. 

3. LOCAL STABILITY OF THE STEADY STATE 

Let us -examine the local stability, of the non-contaminated equilibrium state and the 

contaminated state using the characteristic equation for the equation (1) 
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Let  ( )* * * *

0
, ,

h
E S I V   be an arbitrary- equilibrium  

The characteristic, equation is -given by 

( )

( )
( )

**

 
2*

*1 1

**

0                                                        (5)
2*

*1 1

0

h

h

sv
e

v v

sv
c e e

v v

pe

 
  

 

  
 

 


 

−
− − − −

+ +

− −
− + − =

+ +

−
− −

 

There are two types of plausible positive equilibria named as Infection free equilibrium  and 

endemic equilibrium  

Equating 0
ds

dt
=  and taking I=V=0(1) we get 

( ) 0
ds

A S t
dt

= − =  

S=A/  

Therefore ( ), 0, 0
1

E S=  

Equating 0
dv

dt
= in equation (1) 

( ) ( ) 0..
dv

p I t v t
dt

= − =  

( ( ).. )pI t v t=  

)
(

.

(
)

.v t
I t

p


=  
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Equating .00
dI

dt
=  

0
.

.

( ) ( ) ( ) ( )

1 )

.

(

.dI s t v t c v t

dt v t p

  



+
= − =

+
 

( ) ( ) ( ) ( )(1 ( )) 0. . . . .p s t v t c v t v t   − + + =  

 ( ) ( ) ( ) ( ) ( ) 0.. .. . . .v t p s t c co vo t     − + − + =  

). .( ).)( ) (0(v t c p s t c     + = − +  

( ) ( )..

.
( )

(. )

p s t c
v t

c

  

  

− +
=

+
 

 And 
( )

)

.

.

( )
( )

(

c Ap c
s t

p c p c

 

  

+ +
=

+ +

 

The basic- reproduction ratio, for the -system (1) is given by: 
0

( )

.p S
R

c



 
=

+
 , it describes the 

expected number ,of new, free contaminated pathogens obtained from –a- single contamination 

pathogen particle at the starting of contamination process.    

Theorem 3.1(1) If
0

R <1.0 then,, the non-contaminated equilibrium state 1
E  is locally –

asymptotically- stable for any, time-lag Ʈ 0  0.. 

Biologically the non-contaminated equilibrium state  implies the, cellular contamination; by 

the- hepatitis- B pathogen would vanish. 

(2) When 1
0

R  , then E1 is unstable for any time lag 0  . 

Proof: For E1 equation (5) reduces to  

( ) ( ) ( )2 * 2
0                                       (6)c e c e p S e

h


  
       +−

− − −
− + + + −+ =

 

It is evident that equation (6) has the latent root 0. = −   

Let us consider the polynomial 
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( ) ( )2 * 2
0                                                         (7)c e c e p s e

  
      

− − −
+ + + ++ − =

 

If 0 = then the above equation can be given 

as ( ) ( )2 *
0c c p s

h
     + + + −+ + =  

( )2 *
0c p s

h
c      −+ + ++ + =  

( ) ( )2 *
0c c p s

h
     + + + + + − =  

2
f f f 0
1 2 3

 + + + =  

let ( )f ;
1

c  = + + ( )f ;
2

c = +
*

f
3 h

p s= −  

 

We can establish ( ) *
0,

1 2 3
f f f c p s

h
   + = + −  

 

( )
( )

*

1
p s

h
c

c


 

 
+ −

+

 
 
  

 

 

( ) 1 .
0

c R + −    

 

If R0<1, then non-contaminated equilibrium state of the system (1) is locally asymptotically 

stable when 0 = . 

If ( ) ( )2 * 2
0c e c e p s e

h
  

      
− − −

+ + + + −+ =  

( ) ( )2 * 2
0c e c e p s e

h
  

      
− − −

+ + + + −+ =  
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( )2
0                                                                                                           (8)

1 2
qe q


 

−
+ ++ =

( ) ;
1

q c = + ( ) *
2

pq c s e
h


  +=

−
−  

If the equation (8) has pure imaginary root i =  for 0, 0.   Then from the equation we 

have ( ) 0
1 2

2
q qe


  + ++ =

−
 

4 2 2 2 2
( ) 0                                                                                                               (9)

1 2
q q  + + + =

 

We perceive that 

( )
22 2 2

0,
1

q c  + = + +   

( )
( )

22 2 *
22 2

1
2 22

p s
h

q c

c


 

 

= + −

+

 
 
 
 

 

( ) ( )( )
22 2

1 1
2 0 0

q c R R = + + −  

Therefore if R0<1 then 
2

2q >0 hence equation (9) has no non-negative roots. So the equilibrium 

E1 is locally asymptotically stable for any lag 0.   

Let us indicate h by ( ) ( ) 0
1 2

2
h q qe


  

−
= + + =+  

If R0 >1 we have h (0) = 2q = ( )( )1 0
0

c R + −  and ( )lim h
t

 = +
→

. 

The continuity of the function ( )h   on ( ),−  that the equation ( ) 0h  = =0 has minimum one 

non-negative root so E1 is unstable. 

 For R0>1the steady state E1 behaves as unstable and the non-negative steady state E2 ensue to be 

unique equilibrium in the interior of the feasible region. 

Theorem 3.2: If 0 =  and 1
0

R   then the endemic equilibrium state E2 is locally 

asymptotically stable. 
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Proof: ( )

**

 
* *)2

1 (1

**

* *)2
1 (1

0

sv h
e

v v

sv h
c e e

v v

pe

 
  

 

  
 

 


 

−
− − − −

+ +

− −
− + −

+ +

−
− −

=0 

The related transcendental equation at E2 is 

( ) ( ), , 0                                                                                                (10)P Q e


   
−

+ =

 

3 2
P( , )= ( ) ( ) ( )

1 2 3
b b b       + + +  

2
( , ) ( ) ( ) ( );

54 6
Q b b b      = + +  

Where  

*

( )
1 1 *

v
b

v


  


= − − −

+

  
  

    

 

* *

( )
2 *1 * 1

v v
b

v v

  
  

 
= − − +

+ +

  
  
    

 

( )
( )

* 2 * ** * *

( )  -
3 3*1 * 1 * 1 * *1

1

p s p s vv v v h h
b c e e

v v v v
v

     
    

   


− −
= + + − − − − −

+ + + +
+

    
    
 

    

, ( )( )
4

b c = + ,  

( )
*

( )
5 1 *

v
b c

v


   


= + − −

+

  
  

  
  
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( )

( )

* 2 * ** *

( )  -
6 3*1 * 1 * 1 *

1

p s p s vv v h hb c e e
v v v

v

    
    

  


− −
= + − − − − −

+ + +
+

    
    

        

when 0 =  the equation (10) will have  

( ) ( ) ( ) ( )3 2
51 4 2 3 6

                                                               11b b b b b b  + + + + + +

 

( )
*

1 4 1 *

v
b b c

v


  


+ = − − − + +

+

  
  

    

 

( )
* * *

52 *1 * 1 *1

v v v
b b c

v vv

   
    

 
+ = − − + + + − −

+ ++

      
     

           

 

( )

( )

3 6

*

1 *

* 2 * ** *

 -
3*1 * 1 * 1 *

1

v

v

p s p s vv v h hc e e
v v v

v

b b




    
   

  


+

− −
+ − − − − −

+ + +
+

+ = +

    
    

    
    

 

We can show that 1 4 2 5 3 60; 0; 0b b b b b b+  +  +  and 

( )( )1 4 2 5 3 6( ) 0b b b b b b+ + − +   

Therefore using Routh- Hurwitz criteria we shown that when 0 = E2 is locally asymptotically 

stable. 

4. Permanence 

The system, (1) is said to, be- uniformly incessant if there, is a 0  , autonomous of elementary 

data  _ every solution of S (t.), I (t.), V (t.), with the initial-conditions of the (1) system 

satisfying lim inf ( ) , lim inf ( ) , lim in (.. f ) .s t I t V tt t t    →+ →+ →+  

Theorem 4.1. System (1) supposed to be, permanent if - 0
R >1. 

So as to show the - permanence of the, system we introduce the Permanence- theory for, infinite 

dimensional -system using the theorem 4.1 in Hale- et- al [4]. 
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The semi- group ‘Y(t)’  is known to be point ,dissipative in X if there is-bounded non-empty set, 

B in X   for any ,x X  there ,is ( )0
,

0 0
y y x B=  such that ( ),

0 00
y y x B=  for 0.

t o t  

Let X be a, complete metric-space .Assuming
O

X  is-open and dense, in 

X,
0

X X ,
0 0

, 
0

.X X X X  =   Presuming that- Y (t) is a
0 

C – semi group, on X 

satisfying  

( )
( )

0 0
:

(12).

0

.

0
.. :

Y t X X

Y t X X

→
−

→

  
 
  

 

Let ( ) ( ) |
0

y t y t X
b

=  and A
b  be the- global attractor, of ( )y t

b
 

! Lemma 4.1 Suppose that (t) -satisfies (12) and the following, we have  

(i) There is a 0
0

t   å -Y(t) is compact for - 0
t t  

(ii) oY (t) is point -dissipative in .X. 

(iii) ( )A x
x Aob

b
= 

ò is isolated, and, has an acyclic-covering M ,where 

 , , ..
1 2 3,

M M M M Mn=  . 

( ) 0
s

W M Xi  =  for0i=.1,.2,.3,….n 

‘Then’ 0
 X  is a uniform-repellor with , respect to

0
X  i.e. there is, an 0  ,such 

that\ for any 
0

X X ( ).lim inf ( ,
0

d Y t x X
t


→+

 where d is a distance of 

( )Y t x from 0
X  

Proof: Let us start by proving that the, boundary -planes of  
3

R+  repulse the non-negative 

solution for the system (1) uniformly. Let us 

define

( )  ( )   3
, , , 0 , : ( ) 0, ( ) ( ) 0, (0 , 0 )

0 1 2 3 1 2
. . , . ...

3. .C C R          =  −  = = ++ − If 

 ( )0 3
in ,. t ., 0C C R= − ++  , it’s sufficient to prove   an 0

0
   for any solution   ut of the 

system (1) instigating from-
0C

0
lim inf (. ), 0.

.d u ct t → Therefore we prove, that the below 

constraints of lemma 4.1 are satisfied. Effortlessly we see that
0

C  and 0
C are non-negative 
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constant. In addition (i) and (ii),conditions of lemma 4.1 satisfies evidently. Hence we, only 

need, verify (iii) and (IV) conditions. There- is a constant solution 1
E in 0

C that equate with 

S(.t)= ,I(.t)=V(.t)=0, If (S(t.),V(t.),I(t.)) is solution for the system (1) instigating from , then 

( ) ( ) ( ). . , .
ˆ, 0 0S t S I t V t→ → → , as t . It is clear that is an isolated constant .Now we 

prove that ( ) 0
1

s
W E C =  .Presuming the contrary that  a -positive solution 

( ) )( ). ,  ( , ( .S t I t V t of the system (1) ( ) ( ) ( )( ) ( ) ( )( ),. ., , , Iˆ t V ts t I t V t S→+ ++  

as
o
t → +  .Let us select 0  small enough such that ( )ˆ tS s −  . 

Let t0>0 be adequately large such as ( )  t >t
0

.S S t S forh h h  −   + −  

Then, we have for 0
t t  

( ) ( ) ( ) ( )

( ) ( )

                                                                                        

.

( )
(13)

.

( )

I t S V t c I th

V t pI t V t

    

 

 − − − + −

= − −

 
 
 
 
 
 

Let’s contemplate the matrix defined by  

( ) ( )c e Sh
B

pe


  

 


−
− + −

=
−

−

 
 
 
 

 

Since B  composes non-negative off-diagonal elements from the theorem of Perron –Frobenius, 

We could say there in a non-negative latent vector V for the maximum latent value 1
 of B . 

Let us consider 

( ) ( ) ( ) ( )

( ) ( )

                                                                                   

.
( )

(14)
.

( )

I t S V t c I th

V t pI t V t

    

 

= − − − + −

= − −

 
 
 
 
 
 

Let ( ),
1 2

   = and l>0 be small enough such that  

( ) ( ) ; 
1 0 2 0

l I t l V t    +  +  
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For  , 0 ,  − if ( ) ( )( ),I t V t is a result of the system (14) satisfying  

( ) , ( )
1 2

 I t l V t l = = for t
0 0

.t t−    

As the semi-flow of the system (14) is monotone upon 0A   ,it is evident that 

( ) ( ),   t  and B 0.I t V t as → + → + → +  Let 0
0

t  be adequate thus and so 

( ) ( ), ( ) ( ). ( ) , ( ) ,  as t .I t I t V t V t I t V t  → + → + → +
 

Therefore we come to conclusion that 0C  repels the non-negative solutions of the system (1) 

uniformly from lemma4.1 then the conclusion of theorem 4.1 follows and the system (1) is 

permanent. 

5. HOPF Bifurcation from E2 

Let us treat Ʈ as a bifurcation variable and the criterion for Hopf bifurcation is specified from 

the, endemic- equilibrium E2. 

The characteristic-equation of, the linearization, of the system (1) nearly the –endemic-

equilibrium E2 is given, by 

( , ) ( , ) 0                                                                                                         (15).P Qo eo o o


   
−

+ =

 

Where
3 2

( , )
1 2 3

b b b p    + + + = ;
2

( , )54 6
b b b Q   + + =  

( ) ( ) ( ) ( ) ( ) ( )( )                                            
3 2 2

.  (16)51 2 3 4 6
i e b b b e b b b     


    

−
+ + + + + +

 

As 0 = equation (16) takes the form 

3 2
( ) ( ) ( ) 0

51 4 2 3 6
b b b b b b  + + + + + + = and all roots contain negative real parts 

which is same as proving 3.2 

Weighing the continuity in  and the Rouche’s theorem yielded in ‘Foundations of Modern 

Analysis’ the transcendental equation (16) roots  has positive real part iff ithas purely imaginary 

roots. Let us authenticate the existence of purely imaginary roots for theequation (16) therefore 

we acquire the constraints for all latent values to hold negative real parts. 

Indicate ( ) ( ) ( ) , 0i      = +  be the latent root for (16) where ( ) ( ),    subjected 

to time-lag , when 0 = the endemic equilibrium is stable using (3.2) theorem hence 
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.. .( 0 ) 0  When, 0  is, adequately small, by the, continuity in’ we still have o ( ) 0    

and still we have oE2 is stable.” If ( ) 0
0

  =  evidently for 0 0  value (such 

that ).(
0

o i  = ), is a ‘purely- imaginary- root’ for the ‘equation’ (16), and when 

( )  becomes positive the endemic equilibrium loses stability and in due course turn into 

unstable when ( )  become non-negative. So we can say that while such an ( )0
  doesn’t 

exist or to mean that (16) equation will not hold any purely imaginary root for all time –lag, the 

E2  is stable always. Let us prove that is palpably for the characteristic equation (16) 

Clearly ( 0)i    is root of an equation (16) if, 

(17)

3 2 2 2
.cos .cos .cos .sin

51 2 3 4 6 4

                                  .sin sin                                                                       
5 6

i b ib b b ib b ib

b ib

         

  

− − + + − + + +

+ −

 

Squaring real and imaginary parts 

(18)
2 2 2 2

( ) ( .cos .cos .sin )                                                    
51 3 4 6

b b b b b     − = − + +

(19)
3 2 2 2

( ) ( .cos .sin  - sin  )                                                         
52 4 6

  b b b b      − = +

 

Which is equivalent to 

(20)
6 4 2 2 2 2 2 2 2

( 2 ) ( 2 2 )                                
51 2 4 2 1 3 4 6 3 6

b b b b b b b b b b b  + − − + − + − + −

Let
6 4 2

( , ) 0                                                                                         (21)
1 2 3

. G B B B    += + + + + =

2 2 2 2 2 2
where  B 2 ; B 2 2 ; B51 1 2 4 2 2 1 3 4 6 3 3 6

oo b b b b b b b b b b b= − − = − + − = −

 

The polynomial G can be given as 
2

. . .( , ) ( , ),G j   = as  the third degree polynomial is 

denoted by‘j’  and defined as  

3 2
( , )                                                                                           

1 2 3
j z z B z B z B = + + +

For the, equation 
3 2

( , ) 0                                                                                               (22)
1 2 3

0 .0                 j z z B z B z Bo = ++ + + =
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Let us suppose that 3 0B   for 
2 2

3 3 6 0B b b= −  and 2 0B   then (22) have negative real 

roots. 

Perceiving that 

( ) 2
3 2

1 2

dj z
z B z B

dz
= + +  

say

                                                                                                                      (23)
2

3 2 0  
1 2

z B z B+ + =

 

then

2
2 4 12

1 1 2
z =

6

B B B−  −
 

2
3

1 1 2
1,2 3

B B B
z

−  −
=  

If 0
2

B  then
2

3 .
1 2 1

B B B−  thus both 1 z
2

 , z are negatives. Therefore (23) have 

negative roots .As 3(0) 0,j B=  shows that equation (22) has negative roots. 

So ,if 3 20 and B 0B   then there is no   so that i  is a latent root of the (16) equation 

that is   will not be purely imaginary root of (16).Thus the, real parts--of all  latent- roots of 

(16) ,are non- positive   time-lag 0.  Hence E2 is asymptotically stable for each    if the 

following constraints carry 

(i)  0, 0, (+ ) ( ) 0
5

. .
1 3 5 1 2 4 30 00

*b b b b b b b b +  + − +   

(ii)   B 0  , B
3

.0 0.
2

o   

The’ stability of steady- state rely on lag value that may cause oscillations, if either 3 2 BB or is 

non-positive. Let us consider if 3 0B   then from (220) we, have j.(0)< 0 and 

lim ( )o

z
j z

→
=  .And so equation (22) contains minimum one positive root be 

0
z and hence (20) 

has at least one root given by 
0

 which is appositive root. 
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And if 0
2

B  then  
2

( 3 )
1 2 1

B B B−  and 
1 2

3 0
1 1 1 23

Z B B B= − + − 
 
 
 

hence 

equation- (22) and- equation (20) has a, non-negative root .o which implicit that there exist a 

sole pair of purely imaginary roots to equation (16). 

Let ( ) ( )*( ) i     ++= be the, latent--root of, the, equation (16) so as 

to ( ) 0, ( )
0 0 0

    = =  

from the equations (18) and (19) 

( ) ( )

( )

4 2
2 2 2 2 2 2 25 50 1 4 0 1 6 2 3 4 3 61

cos    k=0,1,2       (24) 
2

2 2 2 0
54 0 6 0

k

b b b b b b b b b b b k

b b b


  


 

=

− + − + −
−

+

− +

 
 
 
  
 

for 0 = 2E  is stable, and endure to be, stable for,
Re( )

 if 0

0

.

0
o

d

dt


 

 
 

=
 that is the 

transverse constraints carry. Which states that least way one latent value with non-negative real 

parts for 0   i.e. –to- 

prove

1
(Re )

Re

0
0

0
*

*

d d
sign sign

d d

 

  
 

+

−

+

=

 + = =

=

     
    
     

 

Taking in to 

consideration

( ) ( ) ( ) ( ) ( ) ( )( )3 2 2
                                             (25)51 2 3 4 6

T T T T T Tb b b e b b b


    
−

+ + + + + +

 

Differentiating (25) with respect to  we get 

( )

( )

2 21 3 2 ( ) 2
5 51 2 4 6 4
2

( , )
54 6

b b e b b b e b bd

dt g e b b b

 
     


    

− −− + + − + + + +
=

−
+ + +

 
 
 

 

( )2 3 2
3 2 ( ) 2

51 2 1 2 3 4
3 2

( ) ( , )
1 2 3

b b b b b e b b

b b b g


      

     

−
+ + + + + + + +

− + + + +
 



1766 

ResMilitaris,vol.13 n°,4 ISSN: 2265-6294 (2023) 

 

 
 

( )' 2 ' ' ' 2 ' '
where ( , )

51 2 3 4 6
g b b b e b b b

     −
= − − − − + +  

Therefore 

( )

0

2 3 2
3 2 ( ) 2

51 2 1 2 3 4 1 1Re Re
3 2

( ) ( , ) 2 21 2 3

S

i

b b b b b e b b p iq
sign ign

p iqb b b g
 


      

     
=

=

−
+ + + + + + + + +

 =
+− + + + +

      
      

     

 

2 2
3 cos +2 sin51 0 2 1 0 0 3 0 0 0 4 0 0 0

p b b b b b        = − + − + +  

3
2 2 cos sin51 1 0 0 0 2 0 0 4 0 0 0 0 0

q b b b b         = − + + −  

4 ' 2 ' ' 2 ' '
- + cos cos sin52 0 2 0 1 0 3 4 0 0 6 0 0 0

p b b b b b b       = + − + − −  

3 ' ' ' 2 '
cos sin sin52 1 0 3 0 2 0 0 0 4 0 0 6 0

q b b b b b b       = − − − − +  

1 2 1 2Re
2 2
2

*

2

p p q q
sign

p qo o

+

+

+   
   

   

 

1 2 31, 2, 3, 4, 5 and 0, 0, 0,,as i B B B=  + + + + +  

andit can be derived that 1 2 1 2 0. .p p q q+   

1

therefore sign Re 0

0

0

*
d

d




 

−



=

+

   
  

   

 

This shows, that the traverse constraint holds, and hopf” bifurcation “occurs is proved. 

Numerical Simulation 

Let us learn about numerical simulations to demonstrate the analytic solutions for disease 

free equilibrium and endemic equilibrium points. For the system (1),we choose the parameter 

values; sho

ws that the infected equilibrium state is locally asymptotically stable 0  when 0 1.R   



1767 

ResMilitaris,vol.13 n°,4 ISSN: 2265-6294 (2023) 

 

 
 

To illustrate analytical method when 0 1R   for population dynamics we choose the parameter 

values  

demonstrating the system has DFE and is locally asymptotically stable as illustrated 

 

 

The infection gets diverges 
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Conclusion 

We have constructed an HBV model with cure term and saturated response. A delay term is 

incorporated into the model which describes the delay in the emission of virus particles and 

actively infected hepatocytes. It is evident that as delay escalates in number of virus particles and 

a time lag in. We obtain the constraints for the stability infected states with delay .The 

constraints for perseverance are given. We observe that as the delay accrued oscillation occurred 

and further increases in restitutes the dynamics to the stable form. Numerical simulations 

encapsulatethe results. 
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