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Abstract 

There are many ways to detect vehicles’ speed these days, which can be categorized 

into two approaches: a non-computer-vision-based and a computer-vision-based. In this paper, 

we propose a computer-vision-based approach using YOLOv4 and XGBoost Regression. To 

predict vehicles’ speed efficiently, we use YOLOv4 for vehicle detection and XGBoost 

regression for speed prediction. In order to get the best speed prediction, we build our dataset 

by recording the local traffic and measuring their speed using a speed gun. From those traffic 

videos, we detect vehicles by using YOLOv4 to generate its bounding boxes. From the 

bounding boxes, we can extract its coordinates relative to the screen, the distance and the angle 

between the two centroids, and the time it takes from point A to point B. This information will 

be our features, and the speed from the speed gun will serve as the target to train our XGBoost 

regression model. In this paper, we conduct several experiments using various features to get 

the best model. Our experiments conclude that our speed prediction approach using YOLOv4 

and XGBoost regression has a very high performance regarding to the ground truth with an 

MAE of just 2 km/h. 

Index Terms – Automatic Vehicle Speed Detection, Computer Vision, Machine Learning, 

YOLO. 

I. Introduction 

There are already many approaches to measure a vehicle’s speed, either using 

computer-vision-based approaches or more traditional approaches using devices, such as 

inductive loop detectors, radars detectors, and so on [1]–[3]. In this paper, we focused on the 

computer-vision-based approaches because it is simpler to deploy and more cost-efficient [1]–

[6]. The only challenge that computer-vision-based approaches have is providing reliable and 

accurate results, as accurate as traditional approaches. In this paper, we used speed gun results 

as the ground truth following [4]–[6]. 

However, in the computer-vision-based approach, earlier researchers need to calibrate 

the camera first, either with the help of manual work or automatically done. For example, He 

and Yung [7] use a vehicle’s speed estimation based on a calibration pattern formed by lane 

markings on the road [8]. The authors use a rectified image in further processing to deal with 
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perspective projection. To obtain the locations of the vehicles within the ground plane, shadows 

cast by rear bumpers are used. The vehicles and shadows are detected by background 

subtraction and binary block matching. 

Cathey and Dailey [9] use a method based on detection of the vanishing point which is 

in the direction of vehicles movement. To obtain this vanishing point, detected line markings 

are used and their intersection in the least square manner. The scale (pixels/meters ratio) for 

the camera is computed from average line marking stripe length and known stripe length in the 

real world. Finally, the authors used cross correlation to compute the number of pixels which 

vehicles passed between consecutive frames. 

Grammatikopoulos et al. [10] use the assumption that the camera is only tilted along 

the x-axis; thus, they assume that the second vanishing point (horizontal and perpendicular to 

the first one) is in infinity. The first vanishing point is detected as the intersection of the line 

markings with least squares adjustment. The vehicles are detected by background subtraction 

and tracked by normalized cross-correlation. 

You et al. [11] use detection of the vanishing point in the direction of vehicles’ 

movements from lane markings and vanishing point perpendicular to road plane from detected 

poles and pedestrians. The authors obtain the scale from a known height of the camera above 

the road or known dimensions on the road. 

The following researchers calibrate the camera automatically by using the vehicle’s 

movement. Dubska et al. [5] published a speed measurement system using a calibration method 

by detection of two vanishing points [6]. Similarly to Dusbka et al. [5], [6], Sochor et al. [4] 

use the detection of two vanishing points to calibrate the camera, infer the scene scale by using 

3D models bounding box of frequently passing cars and aligning it with the real observe cars, 

and measure the speed of passing cars by detecting the vehicles using Faster-RCNN [12] and 

tracking the vehicles by a combination of background subtraction and Kalman filter [13] 

assisted by the detector. In simply, they call the method as Edgelets + BBScale + Reg. 

Schoepflin et al. [14] use an activity map (by detecting the vehicles as the moving 

foreground) to obtain lane boundaries and the intersection of the boundaries treat as the first 

vanishing point in the direction of the vehicle motion. The second vanishing point is detected 

as the intersection of lines formed by the bottom edges of the vehicles. One known length 

(manually measured and entered per camera) in the image is used for scale inference. 

 
Fig. 1: The workflow of our proposed work. It contains two parts: the first part is to train the 

machine and to create the regression model, and the second part is to predict the vehicle’s 

speed using the regression model. On the first part, the features extraction include: 1. The 

start and the end bounding boxes coordinates, 2. The distance between two centroid of the 

start and the end bounding boxes, and 3. The angle between two centroid of the start and the 

end bounding boxes. 
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Filipiak et al. [15] use sequences of detected license plates of vehicles for finding 

intrinsic and extrinsic camera parameters by evolutionary algorithm.  The method was 

evaluated on a dataset captured by zoomed surveillance cameras with a small field of view on 

the road. 

In this paper, we propose a new approach to predict the vehicles’ speed by using a 

combination of YOLOv4 [16] and trained regression model via XGBoost Regression [17]. In 

this paper, our method only requires a comprehensive dataset which we extract to get several 

key features. We combine the features with the speed label from the ground truth. After that, 

we train the machine to learn from those parameters, and finally, predict the vehicles’ speed. 

The key contributions of this paper are: 

1) We introduce a new way of detecting vehicles’ speed without the need for camera 

calibration. 

2) Our experiments show that the most influential feature that help to determine predicting 

the vehicle’s speed more accurately is the distance between two centroids of each 

bounding box. 

3) Our experiments show that our approach can predict vehicles’ speed with a very small 

MAE of 2 km/h. 

 
Fig. 2: Recorded local traffic during daytime and nighttime in two different angles of the 

camera. 

 

 

Table I: Recorded local traffic dataset of cars with labeled ground truth speed. 

No. # Cars w/ Ground 

Truth 

Day / Night Left / Right 

Angle 

Resolution Duration 

1 12 Day Left 1920x1080 00:02:05 

2 12 Day Left 720x1280 00:01:06 

3 18 Night Left 1920x1080 00:00:50 

4 3 Night Left 720x1280 00:00:16 

5 42 Night Left 1920x1080 00:01:26 

6 31 Night Left 720x1280 00:01:23 

7 31 Night Left 1920x1080 00:01:27 

8 19 Night Left 720x1280 00:01:25 

9 24 Night Left 1920x1080 00:01:59 

10 74 Day Right 1920x1080 00:04:19 

11 12 Day Right 1920x1080 00:00:50 

12 56 Day Right 1920x1080 00:03:26 

13 124 Day Right 1920x1080 00:07:28 

14 79 Day Right 1920x1080 00:04:40 

15 111 Day Right 1920x1080 00:06:41 

Total 648    00:39:21 
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II. Related Work Methods 

The first task of detecting the vehicle’s speed is to detect the vehicle itself. I have read 

the paper by Sochor et al. [4], and they used Faster-RCNN to detect the vehicle. Based on the 

paper by [12], Faster-RCNN is quite fast to detect an object which is about 200 ms per image. 

However, at the time of this research was being initiated, there was a faster and more accurate 

object detection method: YOLOv4. YOLOv4 was proposed by Bochkovskiy et al. [16], and 

based on the experiment, the result yields 33 FPS with the image size of 608 and AP of 43.5%, 

while Faster-RCNN yields 9.4 FPS and AP of 39.8%, on the same dataset MS COCO (test-dev 

2017) and with the same Pascal GPU. Another research by Kim et al. [18] concluded that 

YOLOv4 also performed better than Faster-RCNN on the same dataset and GPU (GeForce 

RTX 2080Ti), with mAP of 98.19 and 93.40 and FPS of 82.1 and 36.32, respectively. 

The second task is to find a good method to track a detected vehicle. This is a very 

important task because when predicting the speed, we want to give relevant parameters to the 

regression, for example, giving the coordinates of the vehicle moving from Point A and the 

coordinates of the vehicle moving to Point B to the regression, and those coordinates have to 

be from the same vehicle. Thus, the speed can be predicted properly for that vehicle. We found 

that DeepSORT has the lowest possible of ID Switches when tracking a detected object, and 

based on the experiment, it reduces the number of ID Switches by 45% from traditional SORT 

tracking method [19]. 

Lastly, we need to find a good regression method to yield a good model so that it can 

predict the vehicle’s speed faster and more accurate. Chen et al. [17] proposed a regression 

method called XGBoost, which performed much faster than other major tree boosting systems, 

such as: pGBRT, Spark MLLib, H20, scikit-learn, and R GBM. When processing a 

classification case on Higgs-1M data, XGBoost runs 0.6841 sec per tree with the Test AUC 

score of 0.8304, which is better than scikit-learn which runs at 28.51 sec per tree and 0.8302 

for the AUC score and R GBM which runs at 1.032 sec per tree and 0.6224 for the AUC score. 

III. The Proposed Work 

In this paper, we use YOLOv4 [16] for the vehicle detection and use DeepSORT [19] 

to track the vehicle’s movement on the screen. We use the information retrieved from those 

two techniques and extract some features to train the machine using XGBoost Regression [17]. 

We also experiment on several features combinations, as the key input parameters, to train the 

machine to accurately predict the vehicle’s speed. After we get the regression model, we use it 

to test and calculate the MAE of the predicted speed to the ground truth. Fig. 1 shows the 

workflow diagram of our proposed work. 

A. Dataset 

We gather our own dataset by recording a local city traffic in Surabaya, Indonesia. 

There are a total of 15 videos recorded in two different angles of the camera with a total 

duration of 39 minutes in 1920x1080 and 720x1280 resolutions which consist of 648 vehicles 

with the labeled ground truth speed, please refer to Table I. We also recorded the traffic during 

daytime and nighttime, please refer to Fig. 2. 

On each passing vehicle that is set to be part of the ground truth dataset, we use a speed 

gun to clock the vehicle one time on a certain area only, please refer to Fig. 3. In other words, 

we don’t track the speed of the vehicle throughout the appearance on the screen time from the 

beginning to the end. Therefore, on this experiment, we assume that the vehicle is moving at 

constant speed. 
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There is also a location of recording where it is close to a traffic light, so there is a 

condition where the vehicles are slowing down and stopping at the red light. For this condition, 

we create an augmented data for these vehicles to indicate there is no movement or little 

movement based on the threshold, please refer to Fig. 4. This will be explained more on section 

III.C Feature Extraction. 

 
Fig. 3: The yellow box indicates an area where we use the speed gun to clock the speed for 

each passing car. 

B. Vehicle Detection and Tracking 

We use YOLOv4 [16] for the vehicle detection, due it is performance which is also 

reliable on the real-time detection. In this paper, the YOLOv4 detector has been pre-trained 

with MS COCO dataset to identify 80 classes. However, for this experiment, we modify the 

detector to only focus on the car class. So, the detector should only detect cars. 

We fetch the recorded traffic videos to the YOLOv4 detector. The detector draws a 

bounding box on each detected car, so it gives us the information about the coordinates of each 

bounding box as seen on Fig. 5. 

Once the cars are detected, we use DeepSORT [19] Tracker to track the movement of 

those cars. The tracker assigns an ID to each detected car as the car keeps moving along the 

road on the screen, as seen on Fig. 5. 
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Fig. 4: On certain occasion, although the car is not moving such as stopping at the red light, 

the bounding box drawn to the car may keep changing on its different frame. An augmented 

data is created to handle this scenario. On the left image at nth frame, we set the bounding 

box as the start bounding box with its coordinates, size and centroid (mark as yellow dot). On 

the middle image at (n+10)th frame, we set the bounding box as the end bounding box with 

its different coordinates, size and centroid (mark as green dot). We then define a threshold 

area of 15x15 pixels in the center of a bounding box (right image). As long as the start 

centroid and the end centroid are within the area of threshold, we define the car as not 

moving, and thus, we label the speed as 0 km/h. 

C. Feature Extraction 

As part of the pre-processing, we extract some features from the information we have 

received from the vehicle detection and tracking. These features are going to be used as the key 

input parameters to train the machine later on. 

First, we have received the coordinates of the bounding boxes and its centroids from 

the detection and tracking. For this feature extraction, we collect the start bounding boxes and 

the end bounding boxes of the same car’s ID. We define the interval between the start and the 

end bounding box to be 10 frames or more apart. So, when a car is detected in the beginning, 

the bounding box coordinate will be used as the start bounding box feature, and 10 frames or 

more later, the same detected car’s bounding box coordinates will be used as the end bounding 

box feature. We keep doing this repetitively at interval for each detected car. We only capture 

the start and the end bounding boxes coordinates as long as the coordinates are inside the speed 

captured area, which is the area when we did the speed clocking area for the ground truth, 

please refer to Fig. 6. We use these start and end bounding box coordinates as the first features. 

Before we move on to the next feature extraction, we also create an augmented data to 

indicate that the car is not moving. We define that the car is not moving if between the start 

bounding box centroid and the end bounding box centroid, the distance is not more than 15 

pixels away. If that’s the case, we label the car’s speed to be 0 km/h. This augmented data is to 

handle the situation when the car is slowing down and then finally stops at the red light, as seen 

in Fig. 4. 

Next, for each captured start and end bounding box coordinates, we extract the distance 

from that information. The distance is calculated from the centroid of the start bounding box 

(Xs,Ys) to the centroid of the end bounding box (Xe, Ye), by using Euclidean distance (Fig. 

7). We use the distance as the second feature. 
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Fig. 5: A car is detected using YOLOv4, and when entering the ground truth area and if the 

centroid of the car is inside the area, the start bounding box is drawn as seen on the top 

image. DeepSORT tracks the movement of the detected car as seen on the bottom image. 

After that, again for each capture start and end bounding box coordinates, we calculate 

the angle (in rad unit) of the movement between these two bounding boxes. The angle is 

calculated from the direction of the start bounding box centroid to the end bounding box 

centroid by using arctangent inverse trigonometric function (Please refer to Fig. 8). We use the 

angle as the last feature, and to make the machine be able to adapt to various camera’s point of 

view. 

 

D. XGBoost Training 

After all of the pre-processing is done, we then ready to machine using XGBoost [17] 

regression. We experimented with the training by doing features combinations as shown in 

Table II. 

After training the machine with each combination, we get the regression model that we 

can use to test for the vehicle’s speed prediction. So, we fetch the recorded traffic videos again 

to YOLOv4 detector and DeepSORT tracker, and we add the regression model to predict the 

speed of the vehicle, please refer to diagram workflow in Fig. 1. 

Table II: Feature combinations of regression training. 

Experiment No. 
Start BB 

Feature 

End BB 

Feature 
Distance Feature Angle Feature 

1 Yes Yes Yes Yes 

2 Yes Yes No No 

3 No No Yes Yes 

4 Yes Yes Yes No 

5 Yes Yes No Yes 
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Fig. 6: The bounding boxes is only drawn per frame when the centroid of the car is inside the 

ground truth area marked with yellow box. 

 

Fig. 7: The distance feature is extracted by using the Euclidean distance to find c, as a and b 

are known from the start centroid coordinate which is (Xs, Ys) and the end centroid 

coordinate which is (Xe, Ye). 
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Fig. 8: The angle feature is extracted by using arctangent function between the start centroid 

coordinate which is (Xs, Ys) and the end centroid coordinate which is (Xe, Ye). 

Experiment & Result 

In this paper, we perform five sets of experiment, please refer to Table II. From these 

experiments, we found that the model which has been trained by using all features yields the 

best result with MAE of 2.090 km/h. However, if we only use the start and the end bounding 

box coordinates as the features, the result yields the worst MAE of 3.271 km/h. All of the other 

experiment’s result is shown in Table III. 

Based on the results, the distance feature is the most influential feature in term of 

helping the prediction to be more accurate. The regression models which have been trained 

without the distance feature have bigger MAE. 

IV. Conclusion 

In this paper, we have described a new approach to detect the vehicle’s speed without 

calibrating the camera by using machine learning and regression. We use a combination of 

YOLOv4 detector, DeepSORT tracker, and XGBoost regression. All of these methods are high 

performance methods [16], [17], [19] which can be run at real time and can be helpful in real-

world. 

 

Based on the experiment’s result, the distance between two centroids of the start and 

the end bounding boxes is the most influential feature to help predicting the vehicle more 

accurately. However, we still need to combine it with all of the other features, such as the 

coordinates of the start and the end bounding boxes and the angle of the two centroids, to yield 

even more accurate result with MAE of 2.090 km/h. 

 

Table III: Experiments’ MAE result. 

Regression Model 
MAE 

(km/h) 

All Features 2.090 

Start and End BB + Distance Features 2.117 

Angle + Distance Features 2.884 

Start and End BB + Angle Features 3.029 

Start and End BB Feature 3.271 
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Our suggestion for future research is to train the machine with more camera’s point of 

view variations. We also can try to prepare more dataset which contains a dynamic vehicle’s 

speed (not a constant speed). 
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