

Published/ publié in Res Militaris (resmilitaris.net), vol.12, n°6, Winter 2022

Vehicle Speed Prediction Using YOLOv4 and XGBoost

Regression

By

Yafet Jaya Kusumo

Institut Sains dan Teknologi Terpadu Surabaya

Email: mailto:yafetkusumo@gmail.com,

Evan Kusuma Susantoz

Institut Sains dan Teknologi Terpadu Surabaya

Email: mailto:evanks@stts.edu,

Yosi Kristian

Institut Sains dan Teknologi Terpadu Surabaya

Email: mailto:yosi@stts.edu

Abstract

There are many ways to detect vehicles’ speed these days, which can be categorized

into two approaches: a non-computer-vision-based and a computer-vision-based. In this paper,

we propose a computer-vision-based approach using YOLOv4 and XGBoost Regression. To

predict vehicles’ speed efficiently, we use YOLOv4 for vehicle detection and XGBoost

regression for speed prediction. In order to get the best speed prediction, we build our dataset

by recording the local traffic and measuring their speed using a speed gun. From those traffic

videos, we detect vehicles by using YOLOv4 to generate its bounding boxes. From the

bounding boxes, we can extract its coordinates relative to the screen, the distance and the angle

between the two centroids, and the time it takes from point A to point B. This information will

be our features, and the speed from the speed gun will serve as the target to train our XGBoost

regression model. In this paper, we conduct several experiments using various features to get

the best model. Our experiments conclude that our speed prediction approach using YOLOv4

and XGBoost regression has a very high performance regarding to the ground truth with an

MAE of just 2 km/h.

Index Terms – Automatic Vehicle Speed Detection, Computer Vision, Machine Learning,

YOLO.

I. Introduction

There are already many approaches to measure a vehicle’s speed, either using

computer-vision-based approaches or more traditional approaches using devices, such as

inductive loop detectors, radars detectors, and so on [1]–[3]. In this paper, we focused on the

computer-vision-based approaches because it is simpler to deploy and more cost-efficient [1]–

[6]. The only challenge that computer-vision-based approaches have is providing reliable and

accurate results, as accurate as traditional approaches. In this paper, we used speed gun results

as the ground truth following [4]–[6].

However, in the computer-vision-based approach, earlier researchers need to calibrate

the camera first, either with the help of manual work or automatically done. For example, He

and Yung [7] use a vehicle’s speed estimation based on a calibration pattern formed by lane

markings on the road [8]. The authors use a rectified image in further processing to deal with

mailto:yafetkusumo@gmail.com,
mailto:evanks@stts.edu,
mailto:yosi@stts.edu

Res Militaris, vol.12, n°6, Winter 2022 424

perspective projection. To obtain the locations of the vehicles within the ground plane, shadows

cast by rear bumpers are used. The vehicles and shadows are detected by background

subtraction and binary block matching.

Cathey and Dailey [9] use a method based on detection of the vanishing point which is

in the direction of vehicles movement. To obtain this vanishing point, detected line markings

are used and their intersection in the least square manner. The scale (pixels/meters ratio) for

the camera is computed from average line marking stripe length and known stripe length in the

real world. Finally, the authors used cross correlation to compute the number of pixels which

vehicles passed between consecutive frames.

Grammatikopoulos et al. [10] use the assumption that the camera is only tilted along

the x-axis; thus, they assume that the second vanishing point (horizontal and perpendicular to

the first one) is in infinity. The first vanishing point is detected as the intersection of the line

markings with least squares adjustment. The vehicles are detected by background subtraction

and tracked by normalized cross-correlation.

You et al. [11] use detection of the vanishing point in the direction of vehicles’

movements from lane markings and vanishing point perpendicular to road plane from detected

poles and pedestrians. The authors obtain the scale from a known height of the camera above

the road or known dimensions on the road.

The following researchers calibrate the camera automatically by using the vehicle’s

movement. Dubska et al. [5] published a speed measurement system using a calibration method

by detection of two vanishing points [6]. Similarly to Dusbka et al. [5], [6], Sochor et al. [4]

use the detection of two vanishing points to calibrate the camera, infer the scene scale by using

3D models bounding box of frequently passing cars and aligning it with the real observe cars,

and measure the speed of passing cars by detecting the vehicles using Faster-RCNN [12] and

tracking the vehicles by a combination of background subtraction and Kalman filter [13]

assisted by the detector. In simply, they call the method as Edgelets + BBScale + Reg.

Schoepflin et al. [14] use an activity map (by detecting the vehicles as the moving

foreground) to obtain lane boundaries and the intersection of the boundaries treat as the first

vanishing point in the direction of the vehicle motion. The second vanishing point is detected

as the intersection of lines formed by the bottom edges of the vehicles. One known length

(manually measured and entered per camera) in the image is used for scale inference.

Fig. 1: The workflow of our proposed work. It contains two parts: the first part is to train the

machine and to create the regression model, and the second part is to predict the vehicle’s

speed using the regression model. On the first part, the features extraction include: 1. The

start and the end bounding boxes coordinates, 2. The distance between two centroid of the

start and the end bounding boxes, and 3. The angle between two centroid of the start and the

end bounding boxes.

Res Militaris, vol.12, n°6, Winter 2022 425

Filipiak et al. [15] use sequences of detected license plates of vehicles for finding

intrinsic and extrinsic camera parameters by evolutionary algorithm. The method was

evaluated on a dataset captured by zoomed surveillance cameras with a small field of view on

the road.

In this paper, we propose a new approach to predict the vehicles’ speed by using a

combination of YOLOv4 [16] and trained regression model via XGBoost Regression [17]. In

this paper, our method only requires a comprehensive dataset which we extract to get several

key features. We combine the features with the speed label from the ground truth. After that,

we train the machine to learn from those parameters, and finally, predict the vehicles’ speed.

The key contributions of this paper are:

1) We introduce a new way of detecting vehicles’ speed without the need for camera

calibration.

2) Our experiments show that the most influential feature that help to determine predicting

the vehicle’s speed more accurately is the distance between two centroids of each

bounding box.

3) Our experiments show that our approach can predict vehicles’ speed with a very small

MAE of 2 km/h.

Fig. 2: Recorded local traffic during daytime and nighttime in two different angles of the

camera.

Table I: Recorded local traffic dataset of cars with labeled ground truth speed.

No. # Cars w/ Ground

Truth

Day / Night Left / Right

Angle

Resolution Duration

1 12 Day Left 1920x1080 00:02:05

2 12 Day Left 720x1280 00:01:06

3 18 Night Left 1920x1080 00:00:50

4 3 Night Left 720x1280 00:00:16

5 42 Night Left 1920x1080 00:01:26

6 31 Night Left 720x1280 00:01:23

7 31 Night Left 1920x1080 00:01:27

8 19 Night Left 720x1280 00:01:25

9 24 Night Left 1920x1080 00:01:59

10 74 Day Right 1920x1080 00:04:19

11 12 Day Right 1920x1080 00:00:50

12 56 Day Right 1920x1080 00:03:26

13 124 Day Right 1920x1080 00:07:28

14 79 Day Right 1920x1080 00:04:40

15 111 Day Right 1920x1080 00:06:41

Total 648 00:39:21

Res Militaris, vol.12, n°6, Winter 2022 426

II. Related Work Methods

The first task of detecting the vehicle’s speed is to detect the vehicle itself. I have read

the paper by Sochor et al. [4], and they used Faster-RCNN to detect the vehicle. Based on the

paper by [12], Faster-RCNN is quite fast to detect an object which is about 200 ms per image.

However, at the time of this research was being initiated, there was a faster and more accurate

object detection method: YOLOv4. YOLOv4 was proposed by Bochkovskiy et al. [16], and

based on the experiment, the result yields 33 FPS with the image size of 608 and AP of 43.5%,

while Faster-RCNN yields 9.4 FPS and AP of 39.8%, on the same dataset MS COCO (test-dev

2017) and with the same Pascal GPU. Another research by Kim et al. [18] concluded that

YOLOv4 also performed better than Faster-RCNN on the same dataset and GPU (GeForce

RTX 2080Ti), with mAP of 98.19 and 93.40 and FPS of 82.1 and 36.32, respectively.

The second task is to find a good method to track a detected vehicle. This is a very

important task because when predicting the speed, we want to give relevant parameters to the

regression, for example, giving the coordinates of the vehicle moving from Point A and the

coordinates of the vehicle moving to Point B to the regression, and those coordinates have to

be from the same vehicle. Thus, the speed can be predicted properly for that vehicle. We found

that DeepSORT has the lowest possible of ID Switches when tracking a detected object, and

based on the experiment, it reduces the number of ID Switches by 45% from traditional SORT

tracking method [19].

Lastly, we need to find a good regression method to yield a good model so that it can

predict the vehicle’s speed faster and more accurate. Chen et al. [17] proposed a regression

method called XGBoost, which performed much faster than other major tree boosting systems,

such as: pGBRT, Spark MLLib, H20, scikit-learn, and R GBM. When processing a

classification case on Higgs-1M data, XGBoost runs 0.6841 sec per tree with the Test AUC

score of 0.8304, which is better than scikit-learn which runs at 28.51 sec per tree and 0.8302

for the AUC score and R GBM which runs at 1.032 sec per tree and 0.6224 for the AUC score.

III. The Proposed Work

In this paper, we use YOLOv4 [16] for the vehicle detection and use DeepSORT [19]

to track the vehicle’s movement on the screen. We use the information retrieved from those

two techniques and extract some features to train the machine using XGBoost Regression [17].

We also experiment on several features combinations, as the key input parameters, to train the

machine to accurately predict the vehicle’s speed. After we get the regression model, we use it

to test and calculate the MAE of the predicted speed to the ground truth. Fig. 1 shows the

workflow diagram of our proposed work.

A. Dataset

We gather our own dataset by recording a local city traffic in Surabaya, Indonesia.

There are a total of 15 videos recorded in two different angles of the camera with a total

duration of 39 minutes in 1920x1080 and 720x1280 resolutions which consist of 648 vehicles

with the labeled ground truth speed, please refer to Table I. We also recorded the traffic during

daytime and nighttime, please refer to Fig. 2.

On each passing vehicle that is set to be part of the ground truth dataset, we use a speed

gun to clock the vehicle one time on a certain area only, please refer to Fig. 3. In other words,

we don’t track the speed of the vehicle throughout the appearance on the screen time from the

beginning to the end. Therefore, on this experiment, we assume that the vehicle is moving at

constant speed.

Res Militaris, vol.12, n°6, Winter 2022 427

There is also a location of recording where it is close to a traffic light, so there is a

condition where the vehicles are slowing down and stopping at the red light. For this condition,

we create an augmented data for these vehicles to indicate there is no movement or little

movement based on the threshold, please refer to Fig. 4. This will be explained more on section

III.C Feature Extraction.

Fig. 3: The yellow box indicates an area where we use the speed gun to clock the speed for

each passing car.

B. Vehicle Detection and Tracking

We use YOLOv4 [16] for the vehicle detection, due it is performance which is also

reliable on the real-time detection. In this paper, the YOLOv4 detector has been pre-trained

with MS COCO dataset to identify 80 classes. However, for this experiment, we modify the

detector to only focus on the car class. So, the detector should only detect cars.

We fetch the recorded traffic videos to the YOLOv4 detector. The detector draws a

bounding box on each detected car, so it gives us the information about the coordinates of each

bounding box as seen on Fig. 5.

Once the cars are detected, we use DeepSORT [19] Tracker to track the movement of

those cars. The tracker assigns an ID to each detected car as the car keeps moving along the

road on the screen, as seen on Fig. 5.

Res Militaris, vol.12, n°6, Winter 2022 428

Fig. 4: On certain occasion, although the car is not moving such as stopping at the red light,

the bounding box drawn to the car may keep changing on its different frame. An augmented

data is created to handle this scenario. On the left image at nth frame, we set the bounding

box as the start bounding box with its coordinates, size and centroid (mark as yellow dot). On

the middle image at (n+10)th frame, we set the bounding box as the end bounding box with

its different coordinates, size and centroid (mark as green dot). We then define a threshold

area of 15x15 pixels in the center of a bounding box (right image). As long as the start

centroid and the end centroid are within the area of threshold, we define the car as not

moving, and thus, we label the speed as 0 km/h.

C. Feature Extraction

As part of the pre-processing, we extract some features from the information we have

received from the vehicle detection and tracking. These features are going to be used as the key

input parameters to train the machine later on.

First, we have received the coordinates of the bounding boxes and its centroids from

the detection and tracking. For this feature extraction, we collect the start bounding boxes and

the end bounding boxes of the same car’s ID. We define the interval between the start and the

end bounding box to be 10 frames or more apart. So, when a car is detected in the beginning,

the bounding box coordinate will be used as the start bounding box feature, and 10 frames or

more later, the same detected car’s bounding box coordinates will be used as the end bounding

box feature. We keep doing this repetitively at interval for each detected car. We only capture

the start and the end bounding boxes coordinates as long as the coordinates are inside the speed

captured area, which is the area when we did the speed clocking area for the ground truth,

please refer to Fig. 6. We use these start and end bounding box coordinates as the first features.

Before we move on to the next feature extraction, we also create an augmented data to

indicate that the car is not moving. We define that the car is not moving if between the start

bounding box centroid and the end bounding box centroid, the distance is not more than 15

pixels away. If that’s the case, we label the car’s speed to be 0 km/h. This augmented data is to

handle the situation when the car is slowing down and then finally stops at the red light, as seen

in Fig. 4.

Next, for each captured start and end bounding box coordinates, we extract the distance

from that information. The distance is calculated from the centroid of the start bounding box

(Xs,Ys) to the centroid of the end bounding box (Xe, Ye), by using Euclidean distance (Fig.

7). We use the distance as the second feature.

Res Militaris, vol.12, n°6, Winter 2022 429

Fig. 5: A car is detected using YOLOv4, and when entering the ground truth area and if the

centroid of the car is inside the area, the start bounding box is drawn as seen on the top

image. DeepSORT tracks the movement of the detected car as seen on the bottom image.

After that, again for each capture start and end bounding box coordinates, we calculate

the angle (in rad unit) of the movement between these two bounding boxes. The angle is

calculated from the direction of the start bounding box centroid to the end bounding box

centroid by using arctangent inverse trigonometric function (Please refer to Fig. 8). We use the

angle as the last feature, and to make the machine be able to adapt to various camera’s point of

view.

D. XGBoost Training

After all of the pre-processing is done, we then ready to machine using XGBoost [17]

regression. We experimented with the training by doing features combinations as shown in

Table II.

After training the machine with each combination, we get the regression model that we

can use to test for the vehicle’s speed prediction. So, we fetch the recorded traffic videos again

to YOLOv4 detector and DeepSORT tracker, and we add the regression model to predict the

speed of the vehicle, please refer to diagram workflow in Fig. 1.

Table II: Feature combinations of regression training.

Experiment No.
Start BB

Feature

End BB

Feature
Distance Feature Angle Feature

1 Yes Yes Yes Yes

2 Yes Yes No No

3 No No Yes Yes

4 Yes Yes Yes No

5 Yes Yes No Yes

Res Militaris, vol.12, n°6, Winter 2022 430

Fig. 6: The bounding boxes is only drawn per frame when the centroid of the car is inside the

ground truth area marked with yellow box.

Fig. 7: The distance feature is extracted by using the Euclidean distance to find c, as a and b

are known from the start centroid coordinate which is (Xs, Ys) and the end centroid

coordinate which is (Xe, Ye).

Res Militaris, vol.12, n°6, Winter 2022 431

Fig. 8: The angle feature is extracted by using arctangent function between the start centroid

coordinate which is (Xs, Ys) and the end centroid coordinate which is (Xe, Ye).

Experiment & Result

In this paper, we perform five sets of experiment, please refer to Table II. From these

experiments, we found that the model which has been trained by using all features yields the

best result with MAE of 2.090 km/h. However, if we only use the start and the end bounding

box coordinates as the features, the result yields the worst MAE of 3.271 km/h. All of the other

experiment’s result is shown in Table III.

Based on the results, the distance feature is the most influential feature in term of

helping the prediction to be more accurate. The regression models which have been trained

without the distance feature have bigger MAE.

IV. Conclusion

In this paper, we have described a new approach to detect the vehicle’s speed without

calibrating the camera by using machine learning and regression. We use a combination of

YOLOv4 detector, DeepSORT tracker, and XGBoost regression. All of these methods are high

performance methods [16], [17], [19] which can be run at real time and can be helpful in real-

world.

Based on the experiment’s result, the distance between two centroids of the start and

the end bounding boxes is the most influential feature to help predicting the vehicle more

accurately. However, we still need to combine it with all of the other features, such as the

coordinates of the start and the end bounding boxes and the angle of the two centroids, to yield

even more accurate result with MAE of 2.090 km/h.

Table III: Experiments’ MAE result.

Regression Model
MAE

(km/h)

All Features 2.090

Start and End BB + Distance Features 2.117

Angle + Distance Features 2.884

Start and End BB + Angle Features 3.029

Start and End BB Feature 3.271

Res Militaris, vol.12, n°6, Winter 2022 432

Our suggestion for future research is to train the machine with more camera’s point of

view variations. We also can try to prepare more dataset which contains a dynamic vehicle’s

speed (not a constant speed).

References

[1] M. A. Adnan, N. Sulaiman, N. I. Zainuddin, and T. B. H. T. Besar, “Vehicle

Speed Measurement Technique Using Various Speed Detection

Instrumentation,” IEEE Business Engineering and Industrial Applications

Colloquium (BEIAC), pp. 668–672, 2013, doi: 10.1109/BEIAC.2013.6560214.

[2] W. Czajewski and M. Iwanowski, “Vision-Based Vehicle Speed Measurement

Method,” in Computer Vision and Graphics, 2010, pp. 308–315.

[3] N. Kassem, A. E. Kosba, and M. Youssef, “RF-Based Vehicle Detection and

Speed Estimation,” in 2012 IEEE 75th Vehicular Technology Conference (VTC

Spring), May 2012, pp. 1–5. doi: 10.1109/VETECS.2012.6240184.

[4] J. Sochor, R. Juránek, and A. Herout, “Traffic Surveillance Camera Calibration

by 3D Model Bounding Box Alignment for Accurate Vehicle Speed

Measurement,” Computer Vision and Image Understanding, vol. 161, pp. 87–

98, Feb. 2017, doi: 10.1016/j.cviu.2017.05.015.

[5] M. Dubska, A. Herout, and J. Sochor, “Automatic Camera Calibration for Traffic

Understanding,” in Proceedings of the British Machine Vision Conference 2014,

2014, pp. 42.1-42.12. doi: 10.5244/C.28.42.

[6] M. Dubska, A. Herout, R. Juranek, and J. Sochor, “Fully Automatic Roadside

Camera Calibration for Traffic Surveillance,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 3, pp. 1162–1171, Jun. 2015, doi:

10.1109/TITS.2014.2352854.

[7] X. C. He and N. C. Yung, “A Novel Algorithm for Estimating Vehicle Speed

from Two Consecutive Images,” in 2007 IEEE Workshop on Applications of

Computer Vision (WAC V ’07), Feb. 2007, pp. 12–12. doi:

10.1109/WACV.2007.7.

[8] X. C. He and N. C. Yung, “New method for overcoming ill-conditioning in

vanishing-point-based camera calibration,” Optical Engineering, vol. 46, no. 3,

p. 037202, Mar. 2007, doi: 10.1117/1.2714991.

[9] F. W. Cathey and D. J. Dailey, “A novel technique to dynamically measure

vehicle speed using uncalibrated roadway cameras,” in IEEE Proceedings.

Intelligent Vehicles Symposium, 2005., Jun. 2005, pp. 777–782. doi:

10.1109/IVS.2005.1505199.

[10] L. Grammatikopoulos, G. Karras, and E. Petsa, “Automatic Estimation Of

Vehicle Speed From Uncalibrated Video Sequences,” Proceedings of

International Symposium on Modern Technologies, Education and Profeesional

Practice in Geodesy and Related Fields, pp. 332–338, 2005.

[11] X. You and Y. Zheng, “An accurate and practical calibration method for roadside

camera using two vanishing points,” Neurocomputing, vol. 204, pp. 222–230,

Sep. 2016, doi: 10.1016/j.neucom.2015.09.132.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, Jun.

2017, doi: 10.1109/TPAMI.2016.2577031.

[13] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”

Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960, doi:

Res Militaris, vol.12, n°6, Winter 2022 433

10.1115/1.3662552.

[14] T. N. Schoepflin and D. J. Dailey, “Dynamic Camera Calibration of Roadside

Traffic Management Cameras for Vehicle Speed Estimation,” in Proceedings.

The IEEE 5th International Conference on Intelligent Transportation Systems,

2002, vol. 2002-Janua, no. 2, pp. 25–30. doi: 10.1109/ITSC.2002.1041183.

[15] P. Filipiak, B. Golenko, and C. Dolega, “NSGA-II Based Auto-Calibration of

Automatic Number Plate Recognition Camera for Vehicle Speed Measurement,”

in Applications of Evolutionary Computation, 2016, pp. 803–818.

[16] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed

and Accuracy of Object Detection,” Apr. 2020, [Online]. Available:

http://arxiv.org/abs/2004.10934

[17] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug. 2016, vol. 13-17-August-2016, pp. 785–794.

doi: 10.1145/2939672.2939785.

[18] J. A. Kim, J. Y. Sung, and S. H. Park, “Comparison of Faster-RCNN, YOLO,

and SSD for Real-Time Vehicle Type Recognition,” Nov. 2020. doi:

10.1109/ICCE-Asia49877.2020.9277040.

[19] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with

a deep association metric,” in 2017 IEEE International Conference on Image

Processing (ICIP), Sep. 2017, pp. 3645–3649. doi: 10.1109/ICIP.2017.8296962.

