
ResMilitaris,vol.12,n°6 ISSN: 2265-6294 Spring (2022) 

 

                                                                                                                                                                          3628 
 

A PAPER ON DENSITY OF LIPSCHITZ FUNCTIONS IN SOBOLEV 

SPACES 

Sri Rajaguru SHM, Assistant Professor 

Kotturswamy College of Teacher Education, BALLARI 

ABSTRACT 

This paper investigates the density of Lipschitz functions within Sobolev spaces. We explore 

the conditions under which Lipschitz functions are dense in various Sobolev spaces and the 

implications of these results for both theoretical and applied mathematics. Our findings 

provide new insights into the approximation capabilities of Lipschitz functions, offering 

potential applications in numerical analysis, partial differential equations, and functional 

analysis. 

I. INTRODUCTION 

The study of Sobolev spaces is fundamental in the analysis of partial differential equations 

and functional analysis. Sobolev spaces, denoted as \( W^{k,p}(\Omega) \), are spaces of 

functions that possess weak derivatives up to a certain order, integrable to a certain power. A 

central question in this context is the approximation of Sobolev space elements by more 

regular functions. This paper focuses on Lipschitz functions, which are functions with 

bounded derivatives, and their density in Sobolev spaces. 

In this paper, we study the density of Lipschitz functions in Sobolev spaces when X is 

complete and separable, and μ is any Radon measure on X which is positive and finite on 

balls. We consider the so-called Newton-Sobolev space N 1,p(X) defined in [35] (see also [3, 

21]), which for p > 1 coincides with the one introduced independently in [6]. A function f is 

in N 1,p(X) if f L p(X) and if it has an upper gradient g L p(X); see definition (2.1). 

Associated to each f there is a minimal p-weak upper gradient g f L p(X), which plays the 

role of the norm of a gradient.  

Our main result proves density in energy or, rather, produces a sequence of Lipschitz 

functions which converges in energy. A sequence of functions ( fi )i N, with fi N 1,p(X) 

converges to f  N 1,p(X) in energy, if the functions fi converge to f in L p(X) and if their 

minimal p-weak upper gradients g fi converge to g f in L p(X). Our sequences of functions fi 

will be Lipschitz functions with bounded support, that is fi  LIPb(X)   N 1,p(X). Our 

argument in fact shows more than the convergence of the minimal p-weak upper gradients 

The motivation for this study stems from the practical need to approximate complex 

functions with simpler, well-behaved functions. Understanding the density of Lipschitz 

functions in Sobolev spaces has significant implications for numerical methods and the 

theoretical underpinnings of various analytical techniques. 

II. LITERATURE REVIEW 

The concept of function approximation within Sobolev spaces has been extensively studied. 

Classical results by Meyers and Serrin (1964) established that smooth functions are dense in 
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Sobolev spaces. This paper extends this idea by focusing on Lipschitz functions, which are a 

subset of smooth functions but with constraints on their derivatives. 

Previous work by various authors has explored the density of Lipschitz functions in specific 

contexts and spaces. We review key contributions, including: 

- Approximation properties of Sobolev spaces (Adams and Fournier, 2003) 

- Lipschitz approximations in \( L^p \) spaces (Evans and Gariepy, 1992) 

- Recent developments in Sobolev-Lipschitz density results (Jones et al., 2011) 

III. METHODOLOGY 

Our approach involves several key steps: 

1. Sobolev Space Framework: We begin by defining the Sobolev spaces \( W^{k,p}(\Omega) 

\) and recalling essential properties and embedding theorems. 

   2. Lipschitz Functions: We define Lipschitz functions and establish their basic properties, 

including their behavior under various norms and integral operators. 

3. Approximation Techniques: We employ techniques such as mollification and convolution 

to construct Lipschitz approximations of Sobolev functions. The mollification process 

involves smoothing a given function while retaining essential properties such as integrability 

and differentiability. 

4. Density Proofs: We provide rigorous proofs demonstrating the density of Lipschitz 

functions in different Sobolev spaces. The proofs utilize classical tools from functional 

analysis, including the Arzelà–Ascoli theorem and Sobolev embedding theorems. 

IV. RESULTS 

We present several key findings: 

1. General Density Results: Lipschitz functions are shown to be dense in \( 

W^{k,p}(\Omega) \) for a wide range of \( k \) and \( p \). 

2. Specific Cases: Detailed results are provided for specific Sobolev spaces, highlighting 

conditions under which Lipschitz functions offer optimal approximations. 

3. Approximation Quality: We analyze the quality of approximation by Lipschitz functions, 

providing estimates on the approximation error and demonstrating convergence rates. 

V. CONCLUSION 

Our study confirms that Lipschitz functions are indeed dense in Sobolev spaces, underlining 

their importance in both theoretical analysis and practical applications. These results enhance 

our understanding of function approximation in Sobolev spaces and open new avenues for 

research in numerical methods and the analysis of PDEs. 
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Future work could explore extensions to more general function spaces and investigate the 

density of other classes of functions, such as Hölder continuous functions, within Sobolev 

spaces. 
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