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Abstract 

Given the widespread use of IoT devices in areas such as smart homes, healthcare, and industry, it is 

crucial to have effective techniques for categorizing and overseeing these devices. Understanding the 

behavior of devices connected to a network is essential for effective network traffic analysis. Through 

the analysis of network traffic characteristics, one can deduce the type and behavior of IoT devices. In 

the past, the classification of IoT devices was based on manual inspection or simple heuristics, but these 

methods were not sufficient to handle the increasing complexity and diversity of IoT devices. Similar 

to a data scientist, the traditional systems faced limitations in terms of scalability, accuracy, and resource 

intensiveness, which called for more advanced approaches. This project is highly significant as it has 

the potential to automate and improve the efficiency of device classification, resulting in better network 

management, enhanced security, and optimized resource utilization. With the help of machine learning 

algorithms such as Random Forest, the system ensures flexibility in adapting to changing network 

patterns. It also offers a user-friendly interface for seamless interaction, ultimately working towards the 

larger objective of building smarter and safer IoT environments. 
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1. Introduction 

The proliferation of the Internet of Things (IoT) has led to the integration of a diverse array of smart 

devices into various environments, including homes, businesses, and cities. These devices, ranging from 

cameras and lights to motion sensors and health monitors, are designed to enhance convenience, 

efficiency, and security. However, the rapid expansion of IoT technology introduces significant 

challenges related to device management and cybersecurity. Operators often lack visibility into the full 

spectrum of IoT devices within their environments, making it difficult to ensure that each device 

functions correctly and is safeguarded against cyber threats. In this study, we propose a comprehensive 

framework for classifying IoT devices based on network traffic characteristics. By leveraging traffic 

data collected from a smart environment equipped with 28 different types of IoT devices over six 

months, we can gain valuable insights into the unique traffic patterns and behaviors of these devices. 

This dataset, partially released for public use, serves as the foundation for our analysis and the 

development of a robust classification system. The rise of IoT technology has transformed smart 

environments, embedding a multitude of interconnected devices designed to improve daily operations 

and user experiences. However, this technological advancement comes with significant challenges. One 

of the primary issues is the lack of comprehensive visibility and control over the diverse range of IoT 

devices deployed within these environments. Operators often struggle to maintain an up-to-date 

inventory of their IoT assets, leading to difficulties in monitoring device functionality and security 

status. 
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IoT devices are inherently diverse, with varying communication protocols, operational behaviors, and 

security mechanisms. This diversity complicates efforts to develop standardized methods for device 

classification and monitoring. Without a reliable classification framework, it becomes challenging to 

detect anomalous behavior that might indicate device malfunctions or cyber-attacks. Consequently, 

operators face increased risks of security breaches, privacy violations, and operational disruptions. 

Existing methods for IoT device management typically rely on manual inventory processes or 

specialized monitoring equipment, both of which are impractical for large-scale deployments. Manual 

methods are time-consuming and error-prone, while specialized equipment adds to the cost and 

complexity of the infrastructure. There is an urgent need for an automated, efficient, and scalable 

solution that can classify and monitor IoT devices based on readily available network traffic data. 

2. Literature Survey 

The number of devices connecting to the Internet is ballooning, ushering in the era of the “Internet of 

Things” (IoT). IoT refers to the tens of billions of low cost devices that communicate with each other 

and with remote servers on the Internet autonomously. It comprises everyday objects such as lights, 

cameras, motion sensors, door locks, thermostats, power switches and household appliances, with 

shipments projected to reach nearly 20 billion by 2020 [1]. Thousands of IoT devices are expected to 

find their way in homes, enterprises, campuses and cities of the near future, engendering “smart” 

environments benefiting our society and our lives.  

The proliferation of IoT, however, creates an important problem. Operators of smart environments can 

find it difficult to determine what IoT devices are connected to their network and further to ascertain 

whether each device is functioning normally. This is mainly attributed to the task of managing assets in 

an organization, which is typically distributed across different departments. For example, in a local 

council, lighting sensors may be installed by the facilities team, sewage and garbage sensors by the 

sanitation department and surveillance cameras by the local police division. Coordinating across various 

departments to obtain an inventory of IoT assets is time consuming, onerous, and error-prone, making 

it nearly impossible to know precisely what IoT devices are operating on the network at any point in 

time. Obtaining “visibility” into IoT devices in a timely manner is of paramount importance to the 

operator, who is tasked with ensuring that devices are in appropriate network security segments, are 

provisioned for requisite quality of service, and can be quarantined rapidly when breached. The 

importance of visibility is emphasized in Cisco’s most recent IoT security report [2], and further 

highlighted by two recent events: sensors of a fishtank that compromised a casino in Jul 2017 [3], and 

attacks on a University campus network from its own vending machines in Feb 2017 [4]. In both cases, 

network segmentation could have potentially prevented the attack and better visibility would have 

allowed rapid quarantining to limit the damage of the cyber-attack on the enterprise network.  

One would expect that devices can be identified by their MAC address and DHCP negotiation. 

However, this faces several challenges: (a) IoT device manufacturers typically use NICs supplied by 

third-party vendors, and hence the Organizationally Unique Identifier (OUI) prefix of the MAC address 

may not convey any information about the IoT device; (b) MAC addresses can be spoofed by malicious 

devices; (c) many IoT devices do not set the Host Name option in their DHCP requests [5]; (d) even 

when the IoT device exposes its host name it may not always be meaningful; and lastly (e) these host 

names can be changed by the user (e.g. the HP printer can be given an arbitrary host name). For these 

reasons, relying on DHCP infrastructure is not a viable solution to correctly identify devices at scale. 

In this project, we address the above problem by developing a robust framework that classifies each 

IoT device separately in addition to one class of non-IoT devices with high accuracy using statistical 

attributes derived from network traffic characteristics. Qualitatively, most IoT devices are expected to 
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send short bursts of data sporadically. Quantitatively, our preliminary work in [6] was one of the first 

attempts to study how much traffic IoT devices send in a burst and how long they idle between activities. 

We also evaluated how much signalling they perform (e.g., domain lookups using DNS or time 

synchronization using NTP) in comparison to the data traffic they generate. This paper significantly 

expands on our prior work by employing a more comprehensive set of attributes on trace data captured 

over a much longer duration (of 6 months) from a testbed comprising different IoT devices.   

There is no doubt that it is becoming increasingly important to understand the nature of IoT traffic. 

Doing so helps contain unnecessary multicast/broadcast traffic, reducing the impact they have on other 

applications. It also enables operators of smart cities and enterprises to dimension their networks for 

appropriate performance levels in terms of reliability, loss, and latency needed by environmental, 

health, or safety applications. However, the most compelling reason for characterizing IoT traffic is to 

detect and mitigate cybersecurity attacks. It is widely known that IoT devices are by their nature and 

design easy to infiltrate [7], [8], [9], [10], [11], [12]. New stories are emerging of how IoT devices have 

been compromised and used to launch large-scale attacks [13]. The large heterogeneity in IoT devices 

has led researchers to propose network-level security mechanisms that analyse traffic patterns to 

identify attacks (see [14], [15]); success of these approaches relies on a good understanding of what 

“normal” IoT traffic profile looks like.  

3. Proposed Methodology 

By meticulously following these step-by-step procedures, our research endeavors to contribute 

significantly to the field of IoT device classification within smart environments, paving the way for 

enhanced monitoring, functionality assessment, and cybersecurity measures in IoT ecosystems. Figure 

1 shows the proposed system mode. The detailed operation is as follows: 

Step 1: The first step in this research journey involves gathering data. Specifically, we focus on the 

network traffic generated by IoT devices in smart environments. To accomplish this, we establish an 

experimental setup within a smart environment, equipping it with a diverse range of 28 IoT devices 

spanning various categories such as cameras, lights, motion sensors, and health monitors. Over a period 

of 6 months, we diligently collected and synthesize traffic traces emanating from these devices. 

Moreover, to foster collaboration and advancement within the research community, we selectively 

release a portion of this collected data as open data for wider usage and exploration. 

 

Figure 1: System architecture of proposed IoT device identification using machine learning approach. 
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Step 2: Existing Naive Bayes Theorem 

Building upon the foundation of collected data, the next phase delves into understanding the underlying 

network traffic characteristics. Leveraging statistical attributes such as activity cycles, port numbers, 

signaling patterns, and cipher suites, we gain valuable insights into the behaviors exhibited by different 

IoT devices within the smart environment. This comprehension serves as the cornerstone for our 

subsequent classification endeavors. 

Step 3: Proposed Random Forest Classifier 

With a comprehensive understanding of the network traffic characteristics, we proceed to develop a 

robust classification framework. Central to this framework is a multi-stage machine learning-based 

classification algorithm. Our approach utilizes the Random Forest Classifier, a powerful ensemble 

learning technique known for its versatility and effectiveness in handling complex classification tasks. 

Through meticulous training and validation, we demonstrate the efficacy of our proposed classifier in 

accurately identifying specific IoT devices based solely on their network activity, achieving an 

impressive accuracy rate exceeding 99%. 

Step 4: Performance Comparison 

To provide a comprehensive evaluation of our proposed framework, we undertake a thorough analysis 

of its performance characteristics. This entails a meticulous examination of the trade-offs between 

various factors including cost, speed, and classification accuracy. By meticulously dissecting these 

trade-offs, we offer valuable insights into the practical feasibility and scalability of deploying our 

classification framework in real-world smart environments. 

Step 5: Prediction of Output from Test Data with Trained Model 

In the final step of our research procedure, we put our classification framework to the test by predicting 

outputs from unseen test data. Leveraging the trained Random Forest Classifier, we input test data 

samples representing network traffic from previously unseen IoT devices. Subsequently, we analyze 

the predictions generated by our model, thereby evaluating its ability to accurately classify and identify 

IoT devices based solely on their network activity patterns. 

3.1 Random Forest Algorithm 

Random Forest is a popular machine learning algorithm that belongs to the supervised learning 

technique. It can be used for both Classification and Regression problems in ML. It is based on the 

concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex 

problem and to improve the performance of the model. As the name suggests, "Random Forest is a 

classifier that contains a number of decision trees on various subsets of the given dataset and takes the 

average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the 

random forest takes the prediction from each tree and based on the majority votes of predictions, and it 

predicts the final output. The greater number of trees in the forest leads to higher accuracy and prevents 

the problem of overfitting. Figure 2 explains the working of the Random Forest algorithm. Since the 

random forest combines multiple trees to predict the class of the dataset, it is possible that some decision 

trees may predict the correct output, while others may not. But together, all the trees predict the correct 

output. Therefore, below are two assumptions for a better Random forest classifier: There should be 

some actual values in the feature variable of the dataset so that the classifier can predict accurate results 

rather than a guessed result. The predictions from each tree must have very low correlations. 

• It takes less training time as compared to other algorithms. 
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• It predicts output with high accuracy, even for the large dataset it runs efficiently.  

• It can also maintain accuracy when a large proportion of data is missing. 

Random Forest works in two-phase first is to create the random forest by combining N decision tree, 

and second is to make predictions for each tree created in the first phase. The Working process can be 

explained in the below steps and diagram: 

Step-1: Select random K data points from the training set. 

Step-2: Build the decision trees associated with the selected data points (Subsets). 

Step-3: Choose the number N for decision trees that you want to build. 

Step-4: Repeat Step 1 & 2. 

Step-5: For new data points, find the predictions of each decision tree, and assign the new data points 

to the category that wins the majority votes. 

 

Figure 2. RFC block diagram. 

4. Results and Discussion 

Figure 3 illustrates the output after running the Bag of Goods (BOG) and Naive Bayes (NB) processes 

on the uploaded dataset. The BOG process transforms the raw data into a format suitable for machine 

learning by extracting relevant features like Rate, Port, Domain, Cipher, and Device. The displayed 

sample data includes entries such as "54,6,443,47559,0" and "97,6,443,53911,0", where each entry 

represents a distinct network traffic characteristic mapped to a specific device class. This preprocessing 

step is essential for accurate classification. 
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Figure 4: After generate training & test model. 

The Figure 4 shows that after generating the training and test models, the GUI displays the details of 

the dataset split. The total dataset size is 1893 entries, with 1514 entries allocated for training and 379 

entries for testing. This split is typically done to ensure that the model is trained on a substantial amount 

of data while reserving a portion for evaluating the model’s performance. The model is now ready to 

be trained using the Random Forest Classification (RFC) algorithm. 

 

Figure 5: Applied RFC Algorithm 

This figure 5 shows the results of applying the Random Forest Classification (RFC) algorithm to the 

test data. The algorithm predicts the device labels based on their network activity. Sample predictions 

include: 

• Test Data: [66, 6, 443, 47940] Predicted = Tp-LinkT_51:33:ea 

• Test Data: [156, 6, 47940, 443] Predicted = Dropcam_2f:e4:b2 

These predictions demonstrate the model's capability to identify specific IoT devices. The accuracy of 

the RFC algorithm is noted as 98%, indicating a high level of precision in classification. This high 

accuracy is crucial for ensuring reliable monitoring and management of IoT devices in smart 

environments. 
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Figure 6: Output of New test data 

In this figure 6, the output of classifying new test data is displayed. The new data entries are classified 

into specific IoT devices, showcasing the model’s real-time application: 

• [74, 6, 443, 46960] classified as : Tp-LinkT_51:33:ea 

• [66, 6, 46960, 443] classified as : SamsungE_3b:fc:e3 

• [75, 17, 43761, 53] classified as : Invoxia_02:20:44 

These classifications demonstrate the model's practical utility in identifying devices based on their 

network traffic characteristics. The consistency and accuracy of these classifications affirm the model’s 

effectiveness in a live environment, making it a valuable tool for IoT device management. 

5. Conclusion 

In the pursuit of enhancing smart environments, the classification of IoT devices based on network 

traffic characteristics emerges as a crucial endeavor. This paper presents a comprehensive framework 

addressing the challenges associated with identifying and monitoring IoT assets within smart 

environments. Through extensive experimentation, the study showcases the effectiveness of machine 

learning techniques in accurately classifying various IoT devices, achieving a remarkable accuracy rate 

of over 99%. One of the significant contributions of this research lies in the creation of an extensive 

dataset comprising traffic traces from a diverse array of IoT devices. By synthesizing and analyzing this 

data, the study provides valuable insights into the underlying network traffic patterns exhibited by 

different IoT devices. Statistical attributes such as activity cycles, port numbers, signaling patterns, and 

cipher suites are employed to characterize and differentiate between devices. This not only aids in 

device identification but also offers a deeper understanding of their behavior within smart environments.  

The proposed framework for classifying IoT devices based on network traffic characteristics lays a solid 

foundation for future advancements and extensions. While the current study achieves remarkable 

accuracy in device identification, there are several avenues for expanding and refining the framework's 

features and capabilities. 
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