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Abstract 

Recent studies have found that financial markets have self-similarity and long-term 

dependencies, which can be modeled using fractional Brownian motion. By integrating 

fractional stochastic volatility, models have a greater chance of being more useful in practice 

than those using standard Brownian motion. In addition, to make the simulation more realistic, 

a combination of stochastic interest rates and volatility can be used in hybrid models. The 

model suggested in this research includes a stochastic interest rate derived from the CIR 

process and partial sto-chastic volatility. By using techniques such as replication, Ito's lemma, 

and Ma-liavin calculation, a partial differential equation was created to analytically evalu-ate 

European options. 

Keywords: Pricing Options, Fractional Stochastic Volatility, Stochastic Interest Rate, Mal-
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Introduction 

In recent years, there has been a flood of new option evaluating models, each of which 

allows for greater flexibility of the restricted assumptions that served as the foundation of the 

first model developed by Black and Scholes (1973) [1]. These models make it possible to arrive 

at more precise pricing of options, which may lead to trading results that are more lucrative. In 

order to do this, the assumptions of continued volatility and a constant interest rate have 

garnered the majority of the attention as a result of the volatility phenomenon associated with 

these assumptions [2]. However, persistent volatility is not a sufficient explanation for the 

observed price of options on the market. According to Duan and Wei [3], the Black-Scholes 

model is unable to adequately characterize the asymmetric leptokurtic phenomenon. Since, 

researchers at academic institutions have built various models by including non-constant 

volatility into the Black-Scholes model. There are two types of models that do not exhibit 

constant volatility. The first is local volatility, which is defined as the volatility of the 

underlying price and time as a deterministic function [4][5][6]. The stochastic differential 

equation is used in the second category to describe the volatility of the underlying price 

[7][8][9]. 



  
 

Res Militaris, vol.13, n°3, March Spring 2023 2172 
 

As a result, the use of these models has become more widespread. Many stochastic 

volatility models assume that volatilities are independent of the underlying pricing by assuming 

that volatility does not depend on underlying pricing and that the volatility follows a mean-

reverting Ornstein-Uhlenbeck (OU) process. Analytical option evaluation is done by Stein et.al 

[10]. Hull et.al [11] created a power series method for option pricing and proposed that 

volatility follows a distinct geometric Brownian motion. The assumption of zero correlation 

between the underlying price and volatility in their model is at odds with the "leverage effect," 

which suggests that the underlying price and volatility should be negatively correlated. As a 

result, these models do not account for skewness effects and therefore are unable to predict 

prices correctly. Additionally, these models have certain limitations such as the inability to 

prevent negative volatility, which makes them less reliable. 

In general, the Heston [12] model evolved into one of the most significant models in 

1993 by introducing a stochastic volatility model following the CIR process and establishing 

analytical pricing formula for European options where the underlying price is connected with 

volatility. In addition to allowing non-zero correlation and achieving a closed-form solution 

for option pricing, Scobell et.al [13] expanded on Stein's approach. A distinct kind of stochastic 

volatility is included in [14][15]. By allowing a correlation between the processes that 

determine the underlying price and the processes that determine its volatility, skewness may 

be created in stochastic volatility models. Furthermore, by including jumps, skewness may also 

be added to the stochastic process that determines the price of the underlying asset [16]. 

Brownian motion is a semi-martingale process with independent and stationary 

increments. This assumption is contradicted by specific financial data. On the other hand, 

Fractional Brownian Motion (FBM) models the long-term dependency and self-similarity 

characteristics that are present in the financial market [17][18][19][20]. Since FBM motion is 

neither a Markov nor semi-martingale process, Ito's classical theory that cannot be used. It can 

be expressed as a fractional formula, Duncan et.al [21] presented a Wick product. Wick products 

were used by Xiao et.al [22] to construct a fractional stochastic integral. Hu et.al [23] constructed 

a formula for European call options under an FBM using a Wick-Ito integral, which was 

subsequently expanded by Necula [24]. Arbitrage opportunities may be found in option pricing 

based on the Wick-Ito integral (see Bender and Elliott [25] and Bjork et.al [26]. Cheridito [27] 

and Bender et.al [28] proposed a mixed fractional Brownian motion to limit arbitrage possibility. 

Approximation Fractional Brownian motion [29] may also be used to address this issue instead 

of fractional Brownian motion. As explained by Vilela Mendes et al [30], these concerns are 

irrelevant when stochastic volatility is driven by FBM rather than the stock price. Experts and 

academics are currently considering these fractional stochastic volatility models [31]. In contrast. 

One of the most popular techniques is to develop a hybrid model by including stochastic interest 

rates into stochastic volatility models [32]. Due to the inclusion of a new stochastic source, it is 

very challenging to obtain the analytical solution for European options in the vast majority of 

stochastic models, and numerical methods must be utilized. In these situations [34][35]. 

[36][37][38][39] presented closed pricing formula for European options. 

This article incorporates the stochastic interest rate model with fractional stochastic 

volatility to study the issue of evaluating European options. We replicate the option price by 

building a portfolio in order to establish the partial differential equation (PDE) for option 

pricing. Using Ito's FBM formula and the Malliavin calculus theory to get the PDE. 

The document is organized as follows: Section 2 covers basic principles of fractional 

calculus and introduces a new model using fractional stochastic volatility and a Cox-Ingersoll-

Ross process for the stochastic interest rate. In Section 3, the option price's PDE is derived 
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using replication and Ito's formula for FBM and Malliavin calculus, as well as the Fourier 

transform method for solving the PDE is explained. Section 4 presents numerical examples. 

The report concludes in Section 5. 

Fractional Calculus 

The notion of FBM is presented, as well as some background information on Ito's 

FBM calculation. The fractional Brownian motion represented by BH = (Bt
H, t ≥ 0)  is the 

fractional derivative of the standard brownian motion with the Hurst parameter H set to the 

values (0, 1), and it may be stated as follows: 

Bt
H = kH {∫ (t − u)H−

1

2

t

0

dWu +∫ [(t − uH−
1

2  − (−u)H−
1

2)]
0

−∞

dWu},(1) 

Where W = (Ws , s ∈ ℝ)is a Brownian motion, and 

kH = √
2H(

3

2
−H)

Γ(H+
1

2
)Γ(2−2H)

,    (2) 

Γ(α)  =  ∫ sα−1e−s
+∞

0

ds ,   λ > 0. 

Let W(t)  =  (W1(t),W2(t), . . . , Wm(t), 0 ≤ t ≤ T) be an m-dimensional sBm. Let 

ZH(t, s)  =  kH ((
t

s
)
H−

1

2 (t − s)H−
1

2  − (H −
1

2
) s

1

2
−H (∫ uH−

3

2(u − s)H−
1

2

t

s

du)), (3) 

and defineBj
H(t)  =  ∫ ZH(t, s)

t

0
dWj(s), 0 ≤ t ≤ +∞. 

Then BH(t)  =  (B1
H(t), . . . , Bm

H (t)) , 0 ≤ t ≤ T, is an m-dimensional fbm. 

Assume that L2([0, T]) has an orthogonal basis ζ1, ζ2, . . . , ζk, . .. such that ζk ∈ S for k = 

1,2, and let S be the set of all smooth functions on [0, T] with bounded derivatives. Let 𝒫 be 

the set of all polynomials of the sBms W on the interval[0, T]. Specifically:, 𝒫 includes all 

elements of the form: 

G(ω)  =  g (∫ ζ1dW(t)
T

0
, ∫ ζ2dW(t)
T

0
, . . ∫ ζndW(t)

T

0
),   (4) 

Where g is a polynomial in n variables. We denote yi  = ∫ ei
T

0
dB(s), then for  0 ≤ t ≤ T, 

The Malliavin derivativeof G is defined as 

DtG =  ∑
∂g

∂yi
(∫ ζ1(s)

[0,T]

dW(s),∫ ζ2(s)
[0,T]

dW(s), . . ∫ ζn(s)
[0,T]

dW(s)) ζi(t)

n

i=1

. 

For any G ∈ 𝒫,the norm on the Banach space is denoted by 

∥ G ∥k,p: =∥ G ∥p+∑ [(∫ |Dt1...tlG|[0,T]l
dt1. . dtl)

p

2
]

1
p⁄

k

l=1

.    (5) 

Here 𝔻k,p is obtained by completing 𝒫 under the norm ∥. ∥k,p. 

For fBm, suppose that L2([0, T]) has an orthogonal basis ξ1, ξ2, . . . , ξk. . ., such that ξk ∈
S for k = 1,2,…Let 𝒫H be the collection of all polynomials of the fBm of Hust parameter H 

over the interval [0, T]. In particular, 𝒫H includes all elements of the form 
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F(ω)  = f (∫ ξ1
T

0
dBH(t), ∫ ξ2

T

0
dBH(t), . . ∫ ξn

T

0
dBH(t)),  (6) 

Where f is a polynomial in variables, If F is as in equation (6) and we denote yi  =

∫ ξi
T

0
dBH(s), then for0 ≤ t ≤ T, its Malliavin derivative DH,lF is defined as 

DH,lF =  ∑
∂f

∂yi
(∫ ξ1(s)

[0,T]

dBH(s),∫ ξ2(s)
[0,T]

dBH(s), . . ∫ ξn(s)
[0,T]

dBH(s))

n

i=1

ξi(t) 

Similarly we define∥. ∥H,k,pand𝔻H,k,p. 

For the Hurst parameter H is greater than 1/2, let LH
2  =  L2(Ω, F, PH), wherePH is the 

set of all polynomials of the fbm. Ito’s fbm formula is presented in the following theorem. 

Theorem 1.[40] Let η =  ∫ Gu
t

0
dBu

H, where (Gu, 0 < u < T) is a stochastic process in 

LH
2 ([0, T]),Assume that there iType equation here.s anα > 1 − H such thatE|Gu − Gv | ≤
C|u − v|2n, 

Where |u − v| ≤ δ for some δ > 0 and lim
0≤u,v≤t,|u−v|→0

E|𝔻H
u (Gu − Gv )|

2 = 0 

Let, g ∶  ℝ+  ×  ℝ → ℝbe a function with continuous second-order derivatives and let 

these derivatives be bounded. Furthermore, it is assumed thatE [∫ |GsDsH|
T

0
ds] < ∞ and for 

s ∈ ([0, T]), g′(s, ζs)Gs  in LH
2 ([0, T]). Then for 0 ≤ t ≤ T, 

g(t, ζt) = g(0,0) + ∫
∂g

∂s

t

0

(s, ζs)ds + ∫
∂g

∂x

t

0

(s, ζs)GsdBs
H  +   ∫

∂2g

∂x2

t

0

(s, ζs)𝔻s
Hζds 

Here, 𝔻s 
H is defined as a Malliavin directional derivative [21] when 

1

2
< H < 1, 

                                𝔻𝑠
𝐻  =  𝐻(2𝐻 − 1) ∫ |𝑠 − 𝑟|2𝐻−2

𝑇

0
𝐷𝑟
𝐻𝜁𝑑𝑟. 

Main results 

The key findings of the article are presented in this section. The PDE for a contingent 

claim is first built using the stochastic interest rate and a fractional stochastic volatility model, 

and then the PDE for a European call option is created. 

3.1 Stochastic interest rate with Fractional stochastic volatility model 

Let (𝛺, 𝐹, 𝑃)be a probability space. We investigate the problem of option pricing where 

the dynamics of the underlying asset price 𝑆𝑡, the volatility 𝑣𝑡and the interest rate 𝑟𝑡are 

described by the following under the risk-neutral measureℚ: 

{

𝑑𝑆𝑡

𝑆𝑡
= 𝑟𝑡𝑑𝑡 + |𝑣𝑡|𝑑𝑊𝑡

𝑆

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)dt+𝜂1𝑑𝐵𝑡
𝐻 + 𝜂2𝑑𝑊𝑡

𝑣

𝑑𝑟𝑡 = 𝛼(𝛽 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟√𝑟𝑡𝑑𝑊𝑡
𝑟

     (7) 

Where, 𝐵𝐻is a fractional Brownian motion and H is the Hurst parameter with 𝐻 > 1 ⁄
2𝜅, 𝜂1, 𝜂2, 𝜃, 𝛼, 𝛽, 𝑎𝑛𝑑  𝜎𝑟 ,are constants. 𝐸 represents the expected value under the risk-neutral 

measure ℚ, and the following correlation structure is assumed: 
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𝐸(𝑑𝑊𝑡
𝑠𝑑𝑊𝑡

𝑣) = 𝜌𝑑𝑡, 𝑡 > 0, 𝜌 ∈ (−1,1)    (8) 

𝐸(𝑑𝑊𝑡
𝐻𝑑𝑊𝑡

𝑣) = 𝐸(𝑑𝑊𝑡
𝐻𝑑𝑊𝑡

𝑆) = 𝐸(𝑑𝑊𝑡
𝐻𝑑𝑊𝑡

𝑟) = 0 

To obtain the PDE, the following lemma is necessary. 

Lemma 1.The volatility equation has a unique solution of the form 

𝑣𝑡 = 𝑒−𝜅𝑡𝑣0 + 𝜅𝜃 ∫ 𝑒𝜅(𝑠−𝑡)
𝑡

0
𝑑𝑠 + ∫ 𝜂2𝑒

𝜅(𝑠−𝑡)𝑡

0
𝑑𝑊𝑠

𝑣 + 𝜂1𝑊𝑡
𝐻 − 𝜅 ∫ 𝜂1𝑒

𝜅(𝑠−𝑡)𝑡

0
𝑊𝑠

𝐻𝑑𝑠.    (9) 

The Malliavin derivatives of the elements in equation fBm are equivalent to 

𝐷𝑢
𝐻𝑣𝑡 = (𝜂1𝑍𝐻(𝑡, 𝑢) − 𝜅 ∫ 𝜂1𝑒

𝜅(𝑠−𝑡)
𝑡

0
𝑍𝐻(𝑠, 𝑢)𝑑𝑠) 1𝑢<𝑡 ,     (10) 

Where 𝑍H is defined in Eq.(3) 

Proof.Lemma (1)be proven by using Ito's formula for fBm [40] 

We suppose that the value of a European call option is 𝑈(𝑆, 𝑣, 𝑟, 𝑡), where 𝑆,𝑣, and rare 

parameters of a dynamic system (7). The following theorem provides The PDE of U. 

Theorem 2.𝑈(𝑆, 𝑣, 𝑟, 𝑡)is a contingent claim that satisfies the PDE 
𝜕𝑈

𝜕𝑡
+
1

2
𝑣2𝑆2

𝜕2𝑈

𝜕𝑆2
+ (

1

2
𝜂2
2 + 𝜂1𝜙)

𝜕2𝑈

𝜕𝑣2
+ 𝜌𝜂2|𝑣|𝑆

𝜕2𝑈

𝜕𝑆𝜕𝑣
+
1

2
𝜎𝑟
2𝑟

𝜕2𝑈

𝜕𝑟2
+ 𝑟𝑆

𝜕𝑈

𝜕𝑆

+𝑘(𝜃 − 𝑣)
𝜕𝑈

𝜕𝑣
+ 𝛼(𝛽 − 𝑟)

𝜕𝑈

𝜕𝑟
− 𝑟𝑈 = 0,   

 (11) 

Where 

𝜙 = 𝜙(𝑡, 𝑢) = (𝜂1𝑍𝐻(𝑡, 𝑢) − 𝜅 ∫ 𝜂1𝑒
𝜅(𝑠−𝑡)𝑍𝐻(𝑠, 𝑢)

𝑡

0
𝑑𝑠) 1{𝑢<𝑡},           (12) 

Proof. We consider a portfolio 𝑉that contains underlying asset zero coupon bond 

𝑃(𝑟, 𝑡)and security with price function 𝐺(𝑆, 𝑣, 𝑟, 𝑡). Let V=U(S,v,r,t) the portfolio is then 

presented by 

𝑉 = 𝛥𝑆 + 𝛥1𝐺 + 𝛥2𝑃,          (13) 

Where, the quantities−𝛥, and −𝛥2 of S, G, and P respectively. let 𝑣𝑡 = 𝑒−∫ 𝑟𝑢
𝑡
0 𝑑𝑢𝑉𝑡, 𝑔𝑡 =

𝑒−∫ 𝑟𝑢
𝑡
0 𝑑𝑢𝐺𝑡, 𝑝𝑡 = 𝑒

−∫ 𝑟𝑢
𝑡
0 𝑑𝑢𝑃𝑡 𝑎𝑛𝑑  𝑠𝑡 = 𝑒−∫ 𝑟𝑢

𝑡
0 𝑑𝑢𝑆𝑡 are denoted the discounted 

quantities.Then 

𝑑𝑉 − 𝑟𝑉𝑑𝑡 = 𝛥(𝑑𝑠 − 𝑟𝑠𝑑𝑡) + 𝛥1(𝑑𝐺 − 𝑟𝐺𝑑𝑡) + 𝛥2(𝑑𝑃 − 𝑟𝑃𝑑𝑡)  (14) 

Since 𝐺 = 𝐺(𝑠, 𝑣, 𝑟, 𝑡),  we apply fractional Itô’s formula to get the dynamics of C, 

𝑑𝐺 =
𝜕G

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑆
𝑑𝑆 +

𝜕𝐺

𝜕𝑣
𝑑𝑣 +

1

2
𝑣2𝑆2 +

1

2
𝜂2
2 𝜕

2𝐺

𝜕𝑣2
𝑑𝑡 + 𝜂1𝐷𝑡

𝐻𝑣𝑡
𝜕2𝐺

𝜕𝑣2
𝑑𝑡

+𝜌𝜂2|𝑣|𝑆
𝜕2𝐺

𝜕𝑆𝜕𝑣
𝑑𝑡 +

𝜕𝐺

𝜕𝑟
𝑑𝑟 +

1

2
𝜎𝑟
2𝑟

𝜕2𝐺

𝜕𝑟2
𝑑𝑡

= (
𝜕𝐺

𝜕𝑡
+
1

2
𝑣2𝑆2

𝜕2𝐺

𝜕𝑆2
+ (

1

2
𝜂2
2 + 𝜂1𝜙)

𝜕2𝐺

𝜕𝑣2
+ 𝜌𝜂2|𝑣|𝑆

𝜕2𝐺

𝜕𝑆𝜕𝑣
+
1

2
𝜎𝑟
2𝑟

𝜕2𝐺

𝜕r2
+ 𝑟𝑆

𝜕𝐺

𝜕𝑆
+ 𝑘(𝜃 − 𝑣)

𝜕𝐺

𝜕𝑣

+𝛼(𝛽 − 𝑟)
𝜕𝐺

𝜕𝑟
− 𝑟𝐺)𝑑𝑡 + 𝑣𝑠

𝜕𝐺

𝜕𝑠
𝑑𝑊𝑡

𝑠 + 𝜂1
𝜕𝐺

𝜕𝑣
𝑑𝑊𝑡

𝐻 + 𝜂2
𝜕𝐺

𝜕𝑣
𝑑𝑊𝑡

𝑣 + 𝜎𝑟√𝑟
𝜕𝐺

𝜕𝑟
𝑑𝑊𝑡

𝑟

=: ℒ𝐺𝑑𝑡 + (𝑣𝑠𝐺𝑠, 𝜂2𝐺𝑣, 𝜂1𝐺𝑣, 𝜎𝑟𝐺𝑟) (

𝑑𝑊𝑠

𝑑𝑊𝑣

𝑑𝑊𝐻

𝑑𝑊𝑟

)

= ℒ𝐺𝑑𝑡 + ⟨𝐵𝑇𝛴𝛻𝐶, 𝑑𝑋⟩       

(15 

Where, we defined the differential operator: 
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ℒ𝐺 =
𝜕𝐺

𝜕𝑡
+
1

2
𝑣2𝑆2

𝜕2𝐺

𝜕𝑆2
+ (

1

2
𝜂2
2 + 𝜂1𝜙)

𝜕2𝐺

𝜕𝑣2
+ 𝜌𝜂2|𝑣|𝑆

𝜕2𝐺

𝜕𝑆𝜕𝑣
+
1

2
𝜎𝑟
2𝑟

𝜕2𝐺

𝜕𝑟2
+ 𝑟𝑆

𝜕𝐺

𝜕𝑆

+𝑘(𝜃 − 𝑣)
𝜕𝐺

𝜕𝑣
+ 𝛼(𝛽 − 𝑟)

𝜕𝐺

𝜕𝑟
,

 (16) 

and by the same way we can findℒ𝑉, 𝑎𝑛𝑑 ℒ𝑃.𝛴denotes the diagonal matrix 

𝛴 = (

𝑣𝑠 0 0 0
0 𝜂2 0 0
0 0 𝜂1 0

0 0 0 𝜎𝑟√𝑟

) 

Furthermore 𝐵 is a Cholesky root of the correlation matrix, 

𝐵𝐵𝑇 = (

1 𝜌 0 0
𝜌 1 0 0
0 0 1 0
0 0 0 1

) 

and 𝛻𝐺 denotes the vector 

𝛻𝐺:= (𝐺𝑆, 𝐺𝑣 , 𝐺𝑟) 
where 𝑑𝑋 = (𝑑𝑊𝑠, 𝑑𝑊𝑣, 𝑑𝑊𝐻 , 𝑑𝑊𝑟).we get 

ℒ𝑟𝑉𝑑𝑡 + ⟨𝐵
𝑇𝛴𝛻𝑉, 𝑑𝑋⟩ = 𝛥(ℒ𝑟𝑠𝑑𝑡 + ⟨𝐵

𝑇𝛴𝛻𝑠, 𝑑𝑋⟩) + 𝛥1(ℒ𝑟𝑉𝑑𝑡 + ⟨𝐵
𝑇𝛴𝛻𝐺, 𝑑𝑋⟩)

+𝛥2(ℒ𝑟𝑃𝑑𝑡 + ⟨𝐵
𝑇𝛴𝛻𝑃, 𝑑𝑋⟩)

 

This equation can only be fulfilled if the coefficients 

of𝑑𝑡, 𝑑𝑊𝑠 , 𝑑𝑊𝑣, 𝑑𝑊𝐻, 𝑎𝑛𝑑 𝑑𝑊𝑟coincide. Then we obtain: 
ℒ𝑟𝑉 = 𝛥ℒ𝑟𝑆 + 𝛥1ℒ𝑟𝐺 + 𝛥2ℒ𝑟𝑃

𝐴𝑇𝛴𝛻𝑉 = 𝛥𝐴𝑇𝛴𝛻𝑆 + 𝛥1𝐴
𝑇𝛴𝛻𝐺 + 𝛥2𝐴

𝑇𝛴𝛻𝑃
       (17) 

Equation (18.21) is equivalent to 

𝛻𝑉 = Δ𝛻𝑆 + 𝛥1𝛻𝐶 + 𝛥2𝛻𝑃 

After a simple calculation, we obtain 

𝛥1 =
𝑉𝜈
𝐺𝜈

𝛥 = 𝑉𝑆 − 𝛥1𝐺𝑆         (18)  

𝛥2 =
𝑉𝑟
𝑃𝑟
− 𝛥1

𝐺𝑟
𝑃𝑟

 

Which gives 
ℒ𝑟𝑉

𝑉𝜈
=

ℒ𝑟𝐺

𝐺𝜈
(19) 

The left side is dependent only on V, but the right side is dependent on G directly. G is 

selected randomly in this instance. Therefore, both sides must equal the function f. Set f to zero. 

Then the proof is completed. 

3.2 Pricing formula for European option 

The value of a European call option is discussed here. Let's pretend that U is a 

European call option with T is the time of expiration and E is the strike price. Using the 

theorem referenced in (2), the partial differential equation for the option price may be defined 

as follows: 
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𝜕𝑈

𝜕𝑡
+
1

2
𝑣2𝑆2

𝜕2𝑈

𝜕𝑆2
+ (

1

2
𝜂2
2 + 𝜂1𝜙)

𝜕2𝑈

𝜕𝑣2
+ 𝜌𝜂2|𝑣|𝑆

𝜕2𝑈

𝜕𝑆𝜕𝑣
+
1

2
𝜎𝑟
2𝑟
𝜕2𝑈

𝜕𝑟2
+ 𝑟𝑆

𝜕𝑈

𝜕𝑆

+𝑘(𝜃 − 𝑣)
𝜕𝑈

𝜕𝑣
+ 𝛼(𝛽 − 𝑟)

𝜕𝑈

𝜕𝑟
− 𝑟𝑈 = 0,                        (20)

 

The initial condition for pricing under call options is represented by (21) and (22): 

𝑈(𝑇, 𝑠, 𝑣, 𝑟) = 𝑚𝑎𝑥(𝑠 − 𝐸, 0),     (21) 

Where E is the strike price. Similarly, the formula for a put option is as follows: 

𝑈(𝑇, 𝑠, 𝑣, 𝑟) = 𝑚𝑎𝑥(𝐸 − 𝑠,(22) 

Let 𝑥 = 𝑙𝑛(𝑆), and  𝜏 = 𝑇 − 𝑡 Then we have the following theorem 

Theorem 3.Let𝑎 = (
1

2
𝜂2
2 + 𝜂1𝜙), 𝑏 = −2𝑘 − 2𝑖𝜌𝑦𝜂2, 

𝑅 = √𝛼2 + 2𝜎𝑟2(𝑖𝑦 + 1),   𝑧 =
1

2
𝑖𝑦 − 𝑦2,   𝑑 = √

𝑏2 − 4𝑎𝑧

4𝑎2
 

𝜙̃ = ∫
1

2
𝜂2
2

𝜏

0

+ 𝜂1𝜙𝑑𝑠,         𝑓(𝜏, 𝑦) = 𝑒2𝑑𝜙̃

𝑏
2𝑎 − 𝑑

𝑏
2𝑎 + 𝑑

. 

The solution of equation (20) is: 

𝑈 =
1

2𝜋
∫ 𝑒−𝑖𝑦𝑥
+∞

−∞

𝐸1+𝑖𝑦

𝑖𝑦−𝑦2
𝑒𝐶(𝑦,𝜏)+𝐷1(𝑦,𝜏)𝑣+𝐷2(𝑦,𝜏)𝑣

2+𝐹(𝑦,𝑡𝑎𝑢)𝑟 , (23) 

Where, i is the imaginary unit and 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝐶(𝜏, 𝑦) = ∫

0

𝜏
 [(𝜂2

2 + 2𝜂1𝛷)𝐷2(𝑠, 𝑦) + 2𝑘
2𝜃2∫

0

𝑠
 𝑒𝑥𝑝 ((𝑘 + 𝑖𝑦𝜌𝜂2)(𝑢 − 𝜏)

+2𝜂2
2∫

𝑢

𝜏
 𝐷2(𝜇, 𝑦)𝑑𝜇 + 4𝜂1∫𝑠

𝜏
 𝛷𝐷2(𝜇, 𝑦)𝑑𝜇)𝐷2(𝑢, 𝑦)𝑑𝑢

+2𝜂2
2𝑘2𝜃2(∫

0

𝑠
 𝑒𝑥𝑝 (𝑘 + 𝑖𝑦𝜌𝜂2)(𝑢 − 𝜏) + 2𝜂2

2∫
𝑢

𝜏
 𝐷2(𝑣, 𝑦)𝑑𝑣

+4𝜂1∫𝑠
𝜏
 𝛷𝐷2(𝑣, 𝑦)𝑑𝑣)𝐷2(𝑢, 𝑦)𝑑𝑢)

2
+ 4𝜂1𝑘

2𝜃2(∫
0

𝑠
 𝛷𝑒𝑥𝑝 ((𝑘 + 𝑖𝑦𝜌𝛾2)(𝑢 − 𝜏)

+2𝜂2
2∫

𝑢

𝜏
 𝐷2(𝑣, 𝑦)𝑑𝑣𝐷2(𝑢, 𝑦)𝑑𝑢 + 4𝜂1∫𝑠

𝜏
 𝜙𝐷2(𝑣, 𝑦)𝑑𝑣)𝐷2(𝑢, 𝑦)𝑑𝑢)

2
] 𝑑𝑠

+
2𝛼𝛽

𝜎𝑟
2 [

(𝛼−𝑅)𝜏

2
+ 𝑙𝑛 

2𝑅

2𝑅+(𝛼−𝑅)(1−𝑒−𝑅𝜏)
]

+4𝛾1∫𝑠
𝜏
 𝛷𝐷2𝑢, 𝑦)𝑑𝑢𝐷2(𝑠, 𝑦)𝑑𝑠,

𝐷1(𝜏, 𝑦) = 2𝑘𝜃∫
0

𝜏
 𝑒𝑥𝑝 ((𝑘 + 𝑖𝑘𝜌𝜂2)(𝑠 − 𝜏) + 2𝛾2

2∫
𝑠

𝜏
 𝐷2(𝑢, 𝑦)𝑑𝑢

𝐷2(𝜏, 𝑦) = 𝑑
1+𝑓(𝜏,𝑦)

1−𝑓(𝜏,𝑦)
−

𝑏

2𝑎

𝐹(𝑦, 𝜏) = −2(𝑖𝑦 + 1)
1−𝑒−𝑅𝜏

2𝑅+(𝛼−𝑅)(1−𝑒−𝑅𝜏)

(24) 

Proof. Using the Fourier Transform, we have 

𝑈(𝑥, 𝑣, 𝑟, 𝜏) =
1

2𝜋
∫  
+∞

−∞

𝑒−𝑖𝑦𝑥𝑈̃(𝑦, 𝑣, 𝑟, 𝜏) 

The Fourier transform achieves the following PDE 
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𝜕𝑈̃

𝜕𝜏
= (

𝑣2

2
(𝑖𝑦 − 𝑦2) − 𝑟(𝑖𝑦 + 1))) 𝑈̃ + (

1

2
𝜂2
2 + 𝜂1𝜙)

𝜕2𝑈̃

𝜕𝑣2
+ (𝑘(𝜃 − 𝑣) − 𝑖𝜌𝜂2𝑣)

𝜕𝑈̃

𝜕𝑣
+ 𝛼(𝛽 − 𝑟)

𝜕𝑈̃

𝜕𝑟

+
1

2
𝜎𝑟
2𝑟
𝜕2𝑈̃

𝜕𝑟2
= 0,

 

with the initial condition𝑈̃(𝑦, 𝑣, 𝑟, 0) =
𝐾1+𝑖𝑦

𝑖𝑦−𝑦2
 

𝐺 is the Green's function, which will now be introduced as 
𝑈̃(𝑦,𝑣,𝑟,𝜏)

𝑈(𝑦,𝑣,𝑟,0)
. It fulfills the preceding 

PDE,i.e 

𝜕𝐺

𝜕𝜏
= (

𝑣2

2
(𝑖𝑦 − 𝑦2) − 𝑟(𝑖𝑦 + 1)))𝐺 + (

1

2
𝜂2
2 + η𝜂1𝜙)

𝜕2𝐺

𝜕𝑣2
+ (𝑘(𝜃 − 𝑣) − 𝑖𝜌𝜂2𝑣)

𝜕𝐺

𝜕𝑣
+ 𝛼(𝛽 − 𝑟)

𝜕𝐺

𝜕𝑟

+
1

2
𝜎𝑟
2𝑟
𝜕2𝐺

𝜕𝑟2
= 0

 

with the initial condition 𝐺(𝑦, 𝑣, 𝑟, 0) = 1. If we suppose that 𝐺 is represented by 

𝐺(𝑦, 𝑣, 𝑟, 𝜏) = 𝑒𝐷1(𝑦,𝜏)𝑣+𝐷2(𝑦,𝜏)𝑣
2+𝐹(𝑦,𝜏)𝑟+𝐶(𝑦,𝜏) 

and substitute into Equation (26), we obtain 

{
 
 
 
 

 
 
 
 
𝜕𝐶

𝜕𝜏
= 𝑘𝑣𝜃𝑣𝐷1 + (

1

2
𝜂2
2 + 𝜂1𝜙) (2𝐷1 + 𝐷2

2) + 𝛼𝛽𝐹

𝜕𝐷1
𝜕𝜏

= −𝑘𝐷1 − 𝑖𝜌𝜂2𝐷1 + 2𝑘𝜃𝐷2 + (
1

2
𝜂2
2 + 𝜂1𝜙) + 4𝐷1𝐷2

𝜕𝐷1
𝜕𝜏

= (
1

2
𝜂2
2 + 𝜂1𝜙)𝐷2

2 − 2𝑘𝐷2 − 2𝑖𝜌𝑦𝜂2𝐷2 +
1

2
𝑖𝑦 − 𝑦2

𝜕𝐹

𝜕𝜏
= −𝛼𝐹 +

1

2
𝜎𝑟
2𝐹2 − (𝑖𝑦 + 1)

 

With boundary conditions 𝐶(𝑦, 0) = 𝐷1(𝑦, 0) = 𝐷2(𝑦, 0) = 𝐹(𝑦, 0) = 0. We'll get the 

result by doing some algebraic calculations.We will present a numerical illustration in the next section. 

Numerical results 

In this section, we show the results for evaluating the pricing of European call options 

using the Fractional Heston-CIR model and its parameters. The parameters we use are listed 

below. The mean-reverting speed 𝐾, The long-term mean𝜃, and the volatility of volatility 𝜎 

take the values of 10,0.2 and 0.1 respectively, while the corresponding parameters for the CIR 

model satisfy 𝛼 = 0.329, 𝛽 = 0.0814, and 𝜎𝑟 = 0.05. Strike price, 𝐾, is set at 90 , and the 

underlying price, 𝑆0, is set at 100 , and time to maturity=0.5 Recall that we set 𝐻 = 3/4 

throughout all of the numerical experiments. 

We can investigate the effects of adding the stochastic interest rate into the fractional 

Heston model using the closed-form solutions for option prices. We notice that, depending on 

the parameter values, including stochastic interest rates can make option prices increase or 

decrease as shown in figures (1-2-3).The price of our model is clearly higher than the price of 

the Heston model and Heston-CIR model. In particular, as shown in figure (3), the prices of 

options with varying maturity dates are illustrated. The pricing of our model and the Heston 

model are similar, however, as the time to maturity increases, the difference in pricing between 

our model and the Heston model becomes more pronounced. This can be explained by the fact 

that a longer time to maturity allows for more fluctuations in interest rates, which can contribute 

to the growing disparity in pricing. 
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Figure 1.The Heston price, Heston-CIR price, and our price with respect to the strike price 

 
Figure 2. The Heston price, Heston-CIR price, and our price with respect to the underlying 

asset price 

 
Figure 3. The Heston price, Heston-CIR price, and our price with respect to the time to 

maturity T = 1. 

When determining the value of an option, the strike price is a crucial role to take into 

account. The determination of a reasonable strike price for options is one of the most 

challenging problems that arise in the field of finance. The pricing of European call options is 

determined by taking into account the many different possible values for the strike 

prices𝐾, 𝑟0 𝑎𝑛𝑑 𝑣0. As expected, the results show that the value of the European call option 

goes down as the strike price increases (see Tables 1 and 2). 
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Table 1. European call option price with respect to different values of the strike price K and 

𝑟0 

𝑲 𝒓𝟎 = 𝟎. 𝟎𝟑𝟎 𝒓𝟎 = 𝟎. 𝟎𝟒 𝒓𝟎 = 𝟎. 𝟎𝟓 𝒓𝟎 = 𝟎. 𝟎𝟔 𝒓𝟎 = 𝟎. 𝟎𝟕 

90 25.1583 25.3680 25.9949 26.2066 26.3769 

93 23.58320 23.7886 24.4032 24.6109 24.7781 

96 22.0919 22.2926 22.89344 23.09678 23.2604 

99 20.6823 20.8778 21.4637 21.6622 21.8220 

102 19.3519 19.54197 20.1120 20.30526 20.4609 

Table 2. European call option price with respect to different values of the strike price K and  

𝑣0 

𝑲 𝒗𝟎 = 𝟎. 𝟏 𝒗𝟎 = 𝟎.𝟏𝟓 𝒗𝟎 = 𝟎. 𝟐 𝒗𝟎 = 𝟎.𝟐𝟓 𝒗𝟎 = 𝟎. 𝟑 

90 25.5069 25.69352 25.87802 26.0605 26.24101 

93 23.9480 24.1431 24.3358 24.5263 24.71467 

96 22.4710 22.6736 22.8736 23.0712 23.2664 

99 21.07380 21.2828 21.4890 21.6928 21.8939 

102 19.7537 19.9681 20.1797 20.3886 20.5949 

In addition, the initial value of the underlying price and the maturity time of the option 

both play a crucial effect in the pricing of the option. In this section, we examine also the value 

of the European call option by taking into account a variety of potential values  for the S0 and 

the maturity time (Tables 3 and 4). The obtained data show that the value of the European call 

option increased as a consequence of the rise in the S0 value.  Figures (4-5) indicates that changes 

in the mean-reversion α have little impact on the pricing of call options. The results show that 

when the value of α goes up, the value of the call option price goes up as well(4(b)-5). 

 
(a) 

 
(b) 

Figure 4. The model option price with respect to the strike price (a) and underlying asset 

price (b). 
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(a) 

 
(b) 

Figure 5. The model price with respect to time to maturity (a) and correlation coefficient (b). 

Table 3. European call option price with respect to different values of the underlying asset 

price and 𝑟0 

𝑺 𝒓𝟎 = 𝟎. 𝟎𝟑𝟎 𝒓𝟎 = 𝟎. 𝟎𝟒 𝒓𝟎 = 𝟎. 𝟎𝟓 𝒓𝟎 = 𝟎. 𝟎𝟔 𝒓𝟎 = 𝟎. 𝟎𝟕 

90 18.2071 18.3815 18.9041 19.0812 19.2238 

93 20.2000 20.3854 20.9407 21.1286 21.28000 

96 22.2745 22.4706 23.0574 23.2558 23.4155 

99 24.4253 24.6317 25.24878 25.4572 25.62500 

102 26.6472 26.86353 27.5095 27.72764 27.903012 

Table 4. European call option price with respect to different values of the underlying asset S 

and 𝑣0 

𝐒 𝐯𝟎 = 𝟎. 𝟏 𝐯𝟎 = 𝟎. 𝟏𝟓 𝐯𝟎 = 𝟎. 𝟐 𝐯𝟎 = 𝟎. 𝟐𝟓 𝐯𝟎 = 𝟎. 𝟑 

90 18.5628 18.7526 18.9399 19.1249 19.3076 

93 20.5557 20.7457 20.933 21.1186 21.3017 

96 22.6283 22.8175 23.0043 23.1890 23.3715 

99 24.7755 24.9628 25.1481 25.3312 25.5124 

102 26.9921 27.1769 27.3597 27.5406 27.7196 

Conclusion 

In summary, this paper investigated European pricing options using a combination of a 

stochastic volatility model based on fractional Brownian motion and a stochastic interest rate 

model based on the CIR process. The replication approach, Ito's formula, and Malliavin 
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calculus were used in this work to determine the PDE of the European option under this model, 

and the analytical results were found by using Fourier transformation. Our study also analyzed 

the effect of changing interest rates and volatility under this model and compared it to other 

models, with the numerical findings indicating that European call option prices were higher 

under this model than under the Heston and Heston-CIR models. 
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