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ABSTRACT: 

Using artificial neural networks (ANNs) and sliding mode controls (SMCs) for the active and passive 

components, respectively, this research offers a new hybrid fault-tolerant control system (HFTCS). The 

suggested system has the potential to provide both post-fault optimum performance and stability against 

unanticipated quick disturbances. The observer model of an active fault tolerant control system (AFTCS) 

includes a fault detection and isolation (FDI) unit that estimates bad sensor data using an artificial neural 

network (ANN). A robust state-machine controller (SMC) is used to construct the air-to-fuel ratio (AFR) 

controller in the PFTCS component, which enables for fault management within specified bounds without 

the need for estimate. SMC will be the passive component that responds immediately to faults, while 

ANN will be the active component that optimises performance post-fault via active compensation. In 

addition, a Lyapunov stability study was carried out to guarantee the system's steadiness under both 

typical and abnormal operating settings. The Matlab/Simulink simulation results demonstrate that the 

suggested controller can withstand errors in both clean and noisy sensor measurements. When compared 

to prior efforts, the proposed hybrid algorithm is shown to have greater performance. 

Keywords Artificial neural network, sliding mode control, air-fuel ratio control, Lyapunov stability, and 

fault-tolerant control 

. 

I.Introduction 

Fault-tolerant control systems (FTCS) are 

regarded as modern control systems to achieve 

higher reliability and stability. A fault is 

classified as a deviation from the standard 

operating value of a plant parameter. Faults in a 

system can jeopardize the desired operation of 

the whole system. An FTCS may work under 

faulty conditions and stay stable; however, 

performance loss can occur. The FTCS may also 

be used to maintain stability because of the 

safety of people, and missionsensitive 

applications like aircraft, and unmanned air 

vehicles (UAVs).1–3 Due to variations in 

architectures 

 

 

 

and properties, FTCS is divided into two major 

cate- gories: active and passive. Some symbols 

and abbrevia- tions related to HFTCS are listed 

in Tables 1 and 2, respectively. 

In active fault-tolerant system (AFTCS), the 

fault detection and isolation (FDI) unit is 

designed to detect the fault in the online mode 

and it isolates faulty val- ues.4–6 The FDI unit 

compares the values of the actual sensors with 

the estimated values being generated from the 

observer for a residual generation. The fault in 

the component is declared when the residual 

value exceeds its predefined limiting value. The 

controller is then reconfigured to adapt 

according to the current faulty conditions after 

fault detection and isolation, with little output 

deterioration.7,8 Unlike AFTCS, passive fault- 

tolerant system (PFTCS) may not need  a  

dedicated FDI unit, and any fault in the design 

stage of the con- trol system is considered 
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beforehand in the offline mode.9–11 PFTCS is, 

therefore, very swift than AFTCS due to lesser 

computational cost, but it has the draw- back to 

deal with the faults only that were considered 

during the construction of the controller.12,13 A 

combi- nation of all these approaches is also 

built by integrat- ing both types, namely hybrid 

fault-tolerant control system (HFTCS). In 

protective and safety applications, the hybrid 

system can rapidly respond  to  faults with the 

PFTCS property and later optimize itself with 

the AFTCS property.14–16 In Amin,14 the 

HFTCS has been proposed with Kalman Filters 

in the active part and a high-gain PI controller in 

the passive part. This algo- rithm was limited to 

the linear range of the highly non- linear sensors 

of the AFR control system. In Su et al.,15 the 

HFTCS was proposed for the sensors of the 

distilla- tion column without using any 

intelligent control or data-driven technique. In 

Wang et al.,16  the  HFTCS was proposed for 

the uncertain networked control sys- tems under 

a discrete event-triggered communication 

scheme that was not applied to the process plant. 

A comprehensive study of the FTCS has been 

men- tioned for the nonlinear system in Li17 for 

various fault 

 

scenarios. In Yang et al.,18 the non-linear hybrid 

FTCS design was established for feature 

extraction, and the actuator fault adjustment 

control was applied. The arti- ficial neural 

networks (ANN) technique  was  applied for the 

switched-type nonlinear systems in Tang et 

al..19 For a single-tank system with system 

faults and process disturbances, a fuzzy logic-

based passive fault-tolerant control method was 

proposed in Patel and Shah.20 In Murtaza et 

al.,21 a super-twisting control-based unified FDI 

and FTC system for the air path of diesel  

engines is reported. Kalman Filters (KFs) were 

also used in the FDI architecture of gas turbines 

for faulty sensor esti- mation22,23 consisting of 

both hardware and analytical redundancies. 

 

Artificial neural networks 

The artificial neural network (ANN) includes the 

con- cept of artificial intelligence, whose aim is 

to allow the systems to learn from experience. 

ANN works on the 

 
same logic as a human brain. It is a smart and 

modern approach to data-driven problems.24 

This non-linear technique is used in real-time 

problems like the model- ing of the engine 

because the engine is a highly non- linear system 

and ANN provides an optimal solution for such 

highly nonlinear problems.25–27 The architec- 

ture of the ANN is shown in Figure 1. 

ANN performs a data-parallel function, 

therefore, sequential simulations are easier than 

standard systems. The ANN works with both 

forward and backpropaga- tion. Its multi-layer 

perceptron model is known as a backpropagation 

neural network (BPNN).28–30 The input is in 

the form of samples and is treated with dif- 

ferent multiple hidden layers before the required 

output is mapped through this input. In Gao et 

al.,30 FTC architecture was proposed with an 
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adaptive neural net- work for Multi-Input Multi-

Output (MIMO) systems. In Wang et al.,31 the 

ANN is utilized with a backpropa- gation 

strategy for the fault-tolerant control system. An 

adaptive neural network for the unmolded 

dynamic solution is proposed in Yin et al.32 The 

dataset is mapped to real numbers, that is, (x, y) 

where x repre- sents the selected feature and y 

translates the health state to this feature. ANN is 

described in terms of mathematical form is, 

 
where wl represents the weight matrix inputs, bl 

shows the bias vector for layers l, and al is 

activation vector with the activation elements al. 

 

Sliding mode control 

Robust control is a control system architecture 

tech- nique that can allow systems to manage 

faults as long 

 
as the faults stay within the predefined 

limits.33,34 Robust control systems are static 

rather than dynamic and do not adjust to their 

conditions. For example, a high-gain feedback 

system is a robust control system due to its high 

gain, and changes in the other para- meters 

prove negligible due to its robustness. Sliding 

mode control (SMC) is derived from a variable 

struc- ture control system that mostly 

incorporates various control structure features 

and performs better than existing classical 

control structures.35,36 There are two phases in 

the SMC design as represented in Figure 2. 

SMC triggers chattering in the actuator because 

of the rapid switching, therefore, a higher-order 

SMC named as super twisting algorithm is used 

to reduce the chattering problem.37 It is a non-

linear technique with exceptional robustness 

properties. In practical terms, SMC facilitates 

non-linear processes that are subject to large 

model uncertainties. SMC will form the passive 

part in our proposed HFTCS to react instantly to 

faults.38 

A customizable surface needs to be built in the 

first phase. The second phase should be planned 

to ensure that the system converges to the 

sliding surface for a minimum time. The 

phenomenon in which the motion takes place on 

a sliding surface is known as a sliding mode.38 

 

AFR control of IC engines 

 The internal combustion engine is a type of heat 

engine in which the combustion of air and fuel 

takes place inside the cylinder and is used as the 

direct motive force. These engines transform the 

chemical energy of a fuel into thermal energy 

and use this energy to produce mechanical work. 

Its two main types are known as Spark Ignition 

(SI) and Compression Ignition (CI).  In SI 

engines, the combustion takes place with the 

help of spark plugs, while in CI engines, the heat 

of compres- sion is used for combustion.39 

 
The term air-fuel ratio (AFR) is defined as a 

mixture ratio of proper fuel and air in the 

combustion chamber and it is widely used to 

enhance the reliability and effi- ciency of the IC 

engine. Its mathematical  expression can be 

written as: 

 
where mair represents the mass of the air and 

mfuel rep- resents the mass of the fuel. The 

equation of AFR for gasoline mixture is, 

 
According to this equation, AFR is said to be the 

stoi- chiometric ratio with a value of 14.6:1 for 

gasoline fuel and is desirable for optimum 

combustion, fuel energy savings, and reduced 

emissions levels. If the mixture has AFR greater 
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than 14.6:1, it is known as a lean mix- ture with 

greater air than fuel. A mixture with lesser than 

14.6:1 is termed a rich mixture with greater fuel 

than oxygen. However, both of them are 

considered to be harmful to the engine’s 

performance and life as it decreases their 

efficiency. The value of AFR is different for 

various categories of fuels. For example, 

methanol values are 6.47:1, 9:1 for ethanol, and 

34.3:1 for hydrogen.40 

The air-fuel mixing system of an SI IC engine is 

shown in Figure 3. Atmospheric air is filtered 

first and then passes through a throttle  actuator.  

To  change AFR more accurately by the AFR 

controller, the fuel actuator has been designed to 

adjust the fuel supply. The fuel is then first 

purified and transferred to the fuel actuator for 

flow control via the fuel pump. Air and fuel 

mixture is then made and provided for 

combustion to the engine cylinders. 

In the AFR control system of the IC engine, four 

sensors play an important role. 

Throttle sensor: Often known as an air sensor. It 

provides the air throttle position signal to the 

engine control unit (ECU). 

Manifold absolute pressure (MAP) sensor: It is 

also called a pressure sensor. It provides the 

suction manifold air pressure value to the ECU. 

Speed sensor: It measures the speed of the 

engine crankshaft and provides to the ECU for 

controllercalculations. 

Exhaust gas oxygen (EGO) sensor: It’s often 

referred to as a gas sensor. The concentration of 

oxygen in the exhaust of the IC engine is 

measured by an EGO sensor and provided to the 

ECU. 

In the paper, our contribution is to implement 

the novel HFTCS for the reliable operation of 

the IC engine to maintain the AFR in faulty 

conditions and prevent engine shutdown. In the 

proposed system, SMC will form the passive 

part to react instantly to faults while ANN will 

optimize post-fault performance with active 

compensation. Lyapunov stability analysis was 

performed to make sure that the system remains 

stable in both normal and faulty conditions. The 

fault tolerance is checked with noisy 

measurements of sen- sors to examine the 

robustness of the proposed control- ler. The 

simulation results in the Matlab/Simulink 

environment show that the designed controller is 

robust to faults in normal and noisy 

measurements of the sen- sors and reliable. 

Furthermore, the comparison with the existing 

works is carried out to demonstrate super- ior 

performance. 

The structure of paper is organized as. Section 

‘‘Research methodology’’ discusses the research 

metho- dology. Section ‘‘Results and 

discussions’’ presents the results and 

discussions. Section ‘‘Comparison with the 

existing works’’ elaborates on the comparison. 

Finally, the last section provides the conclusion 

of the paper. 

 
Research methodology 

The proposed HFTCS is implemented on the 

available IC engine model in Simulink. 

Mathworks explains preliminary knowledge and 

model working.41,42 In this model, the AFR 

system of the gasoline engine is built based on 

the findings of Crossley and Cook43 and was 

fully validated against dynamometer test data.42 

The mathematical equations used for the model 

construction are in accordance with the mean 

value engine model (MVEM).44 Moreover, it 

gives accurate AFR as found in practical 

gasoline engines.40 HFTCS is a combination of 

AFTCS as well as PFTCS, as previously 

mentioned. AFTCS is designed using an ANN-

based observer to build the FDI unit. In PFTCS, 

the AFR controller is designed using a robust 

SMC that allows systems to manage faults 

without many computations. The engine speed 

for this study is set at 300 r/min due to the 

design speed of the available MATLAB engine 

model. Therefore, a value of 300 is transmitted 

to the controller by the FDI unit in the case of a 

fault in the speed sensor. We utilized constant 

speed in this study since the engines in the 

process plant run at a constant speed most of the 

time, and the designed FDI provides the 

controller with 300 r/min of speed if the speed 

sensor fails. Because the paper is focused on 
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designing an ANN-based AFTCS system, load 

changes and their impact on speed are not 

examined. The data for the MAP sensor and the 

throttle sensor at 300 r/min is derived using the 

available Matlab model lookup tables (LTs). To 

generate nonlinear interactions between the 

MAP sensor and the throttle sensor, the ANN 

approach is applied. For the generation of the 

estimated value of malfunctioning sensors, the 

FDI unit uses these nonlinear relationships. If 

the throttle and MAP sensors are faulty, the FDI 

unit generates an estimated value based on ANN 

observations and supplies to the ECU. The 

important parameters used in the model are 

mentioned in Table 3: First of all, the engine can 

work in its normal conditions if there is no fault. 

On the other hand, if a single sensor fault will 

happen, SMC will form the passive  part to react 

instantly to faults while ANN will optimize 

post-fault performance with active 

compensation. Noise is introduced into the 

sensors, and their effect on the output is seen in 

normal as well as in faulty conditions to check 

the robustness of the proposed HFTCS. Zero 

seconds have been assumed when the sensors 

are switched. However, a delay possibly occurs 

in the switching actions. The limitations of the 

work are that only the full fault for sensors is 

carried out without taking partial faults which 

will be covered in future works. Engine AFR 

system modeling The modeling mentioned in 

this section is generic for complete theoretical 

analysis and adopted from well known 

literature.40,45 The control of the air-fuel ratio 

is divided into different dynamics: air dynamics, 

sensor model, and fuel dynamics. Air dynamics. 

The dynamic manifold intake is defined by the 

mass conservation theory and ideal air gas 

hypothesis in the following terms: 

 
Where, Pin shows manifold pressure, vin 

demonstrates the input volume, and Tin 

represents the input tempera- ture; the gas 

constant is R; fth illustrates the throttle opening 

position. The mass flow into cylinders is repre- 

sented  as  m_ Cyt;  the  mass  flow  through  the  

valve  is demonstrated as m_ th; and engine 

speed is Ne. The tem- perature is assumed to be 

constant. Thus, equation (4) becomes: 

 
The mass flow through the valve is: 

 
Cd the coefficient of discharge. The variable Pid 

illustrates the pressure due to overhead loading 

and the load ratio Pr is the overload pressure 

. The feature Ses fð thÞ is the area of 

throttle opening. In an implementation, the 

product Cd Ses fð thÞ is considered and also 

known as a single feature of throttle valve 

opening. It is demonstrated in several different 

models. The one chosen in this work is: 

 
where s1=0:00051, s2=2:4357, s3=0:052, and 

s4=0:0011 are constants. The g(Pr) shows the 

nonlinear relationship as: 

 
Fuel dynamics. It is represented as: 

 
Where m_ fiðtÞ represents the fuel flow 

injection 

½kg=s , tf is the 

fuel vapor process, m_ fv is vapor fuel flow 

½kg=s , m€ff 

ðtÞ shows liquid mass fuel flow ½kg=s

, and m_ f ðtÞ shows fuel flow in the cylinders 

½kg=s , , is a 

state vector.44 The second solution has been 

selected in our case: 

 
Where s5, s6, s7, s8 are constant parameters. 

The injector model is given by a linear 

relationship between the mass fuel flows from 

the injectors. The air-fuel ratio is then obtained: 
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00m_ cyl (t)00 is mass of cylinder, m_ f (t) is 

mass fuel flow into the cylinder, ‘‘lcyl’’ is AFR 

in the cylinder. 

Sensor model. The lambda sensor model is 

represented as: 

 
where tl represents the time delay. The time 

delay t in terms of engine speed NeðtÞ is 

represented as: 

 
State-space representation. It is represented as: 

 

 
Controller design 

The controller design is adopted from Sui and 

Hall46 and given below: 

 
Where the input is u, the output is y, and the  

esired output is yd, the state variables are x1 and 

x2, engine parameters are a and b, and finally Ne 

is engine speed. However, in this situation, we 

used predicted state observers, 

 
where x1 and x2 are the predicted values. 

 
Where the predicted output is y, the mean square 

error is E. The estimated output is represented 

as, 

 
Equation (25) shows the mean square error 

function,so if we take the partial derivative of 

the previous equation, 

 
The gradient descent algorithm can change the 

state variables, 

 
Where the estimated inputs are x1 and x2 are the 

predicted values. Adding equations (26) and (27) 

into the (28) and (29) we get, 

 

 
Add the value of h in the (30) and (31) 

equations, 

 
Lyapunov stability analysis is performed to 

check the system’s stability. Let’s assume the 

Lyapunov function is, 

 
Put the values of actual and desired outputs in 

equation (34), 

 
The error estimation is, 

 
So the Lyapunov function is, 

 
If we change ðkÞ cycle into ðk+1Þ the cycle 

then the equation is, 

 
Adding equations (32) and (33) into the (40) and 

(41) as follows, 
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Taking the difference between actual and 

predicted output is, 

 

 
So, the difference between both of them is, 

 
The last equation shows that the difference 

between both cycles is negative definite and 

hence the Lyapunov stability proof is 

successfully achieved. The observer design with 

ANN was already discussed in Shahbaz and 

Amin4 for the AFTCS part. SMC mostly 

incorporates various control structure features 

and facilitates non-linear processes that are 

subject to large model uncertainties. SMC will 

form the passive part to react instantly to faults. 

Consider the MIMO system, 

 
Where u represents the input, x shows the state 

vector, and y is the output of the system. f ðxÞ 

and giðxÞ are vector fields, and hiðxÞ is a 

smooth function. Fiðx, Tþ demonstrates the 

uncertainty and it is further classified into 

structured and unstructured parts:   

 
Where qsi is partial uncertainty and it is written 

as, 

 
Where Uo maintain the known terms, and Uo 

manage the uncertain terms and actuators’ faults. 

Assume that G1ðxÞ exists and taking Uo as: 

 
Where Uo provides the desired output and 

eliminates all uncertainties and faults as well. 

Taking _Z as: 

 
The remaining system can be handled over: 
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Unstructured uncertainties are assumed to be 

handled as: 

 
The controller structure ui is taken as: 

 

 

 
Where u1 and u2 is control inputs and k1 and k2 

is mass flows. The output as set point regulation 

errors are selected as: 

 

 
Control law: 

The derivatives of the sliding variables after 

taking into account structured and unstructured 

uncertainties are: 

 
Here, Yi represents the structured faults. These 

structured faults can be represented in terms of 

flow rates: 

 
Where Y1 and Y2 represents the over and 

under-flow through exhaust gas recirculation 

and variable geometry turbo actuators 

respectively. It is assumed that unstructured 

uncertainties are bounded: 

 
The control action is proposed in equation (67). 

To work out uoi (control that can stabilize 

unaffected plant), ignoring structured faults, and 

unstructured faults in equations (85) and (86): 
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Results and Discussions 

For fault detection, isolation, and 

reconfiguration of controllers, FDI is 

implemented in the model with ANN. The FDI 

unit continuously tracks the sensor values for 

any fault. If the sensor value exceeds the 

specified limit, a fault is detected by threshold 

 
Figure 5. Performance of AFTCS. 

comparison. Once the fault has been observed, 

an estimated value of the observer model based 

on ANN is substituted for the fault value and is 

supplied to the ECU. The active part performs 

post-fault optimal performance for the active 

compensation by providing the estimated value 

of the faulty sensor by ANN observer using the 

other healthy sensors. Two ANNs have been 

introduced for throttle and MAP sensors. Since 

the engine is running at 300 r/min, this value has 

been supplied to the controller if a fault occurs 

in the speed sensor. The AFTCS portion is 

simulated with sensor faults one at a time and 

the effects on the AFR are observed at t=5 s due 

to the internal warm-up delay of the engine, as 

shown in Figure 5. Results from Figure 5 show 

that the AFR is constantly degraded to 11.7 with 

every single sensor fault on the AFTCS portion 

alone. The passive part of the system consists of 

robust SMC. It provides a very quick response 

against fault, and after a very minor glitch in the 

output, the system maintains its steady state. 

Since the AFR decreases to 11.7 in the AFTCS 

part, the SMC controller with a fuel actuator is 

designed to keep it to 14.6 in faulty conditions. 

In each of the four sensors, the faults are 

inserted at t=0 s, and the results on the AFR are 

detected at t=5 s due to internal warm-up times 

of 5 s in the original model. Figure 6 shows the 

results achieved for each sensor without noise in 

the sensors. The output response of the proposed 
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PFTCS for faults in each sensor is demonstrated 

in Figure 6. In the existing model, AFR is 

affected by faults in each sensor and decreases 

to 11.7, that is, degradation in the performance 

in faulty conditions. However, the proposed 

PFTCS maintains AFR to 14.6 in normal as well 

as faulty conditions. These results show that the 

proposed PFTCS is robust to single-sensor 

faults. The performance of the overall HFTCS 

for the four sensors is shown in Figure 7 in 

normal and faulty conditions. The system 

maintains an AFR of 14.6 in faulty situations, 

according to the results. The proposed HFTCS is 

resistant to sensor faults, preserving its 

performance and thereby avoiding AFR 

degradation. The results represent that after a 

very minor glitch, the system maintains its 

steady state with the help of a robust SMC 

controller. Table 4 illustrates the robustness of 

 
Figure 6. Performance of PFTCS. 

 

Figure 7. Performance of HFTCS without noise. 

 

 
the proposed HFTCS with ANN and SMC 

without noisy conditions of sensors. After 

confirming adequate efficiency in noise-free 

operation, the system response is tested by 

integrating noise into sensor measurements. 

Table 5 shows the noise parameters introduced 

in the sensors. Greater noise is incorporated for 

throttle and speed sensor measurements due to 

high sensor values. Due to the very limited 

range, smaller noise is added in sensors EGO 

and MAP. In Figure 8, the effects of AFR are 

illustrated in normal and faulty conditions. The 

results demonstrated that after very minor sparks 

in the output, the system achieves the set point 

even under faulty conditions. The AFR remains 

stable with small misfires and the system 

continues to operate successfully in the noisy 

conditions of sensors. The performance of the 

proposed HFTCS with noise introduced is 

shown in Table 6. The output response in Figure 

8 is dominated by the PFTCS that is running in 

parallel with AFTCS. The active part performs 

post-fault optimal performance for the active 

compensation by providing the estimated value 

of the faulty sensor by ANN observer using the 

other healthy sensors. Since both controllers 

work in parallel, the active compensation effect 

does not become much evident due to the 

dominance of the passive controller. However, it 

becomes very much evident in only active FTCS 

as shown in Figure 5. 
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Comparison with the existing works 

In this section, a comparison of the proposed 

HFTCS with the existing models is discussed. 

We have designed an HFTCS with dedicated 

non-linear controllers 

 
Figure 8. Performance of HFTCS in noisy 

conditions. 

 
known as ANN and SMC. The previous work 

has not used the ANN and SMC together for 

HFTCS design for the AFR system of the IC 

Engine. In the proposed  system, SMC will form 

the passive part to react instantly to faults while 

ANN will optimize post-fault performance with 

active compensation. Moreover, Lyapunov 

stability analysis was performed to make sure 

that the system remains stable in both normal 

and faulty conditions. The estimated values of 

the throttle and MAP sensors, as well as the 

accompanying mean square errors (MSE), are 

shown in Shahbaz and Amin.4 ANN approach 

can cover the complete nonlinear range of the 

MAP sensor, which is also less computationally 

expensive than lookup tables and hence  

preferred. Due to its valuable functionalities of 

learning, self-organization, and non-linear 

modeling capabilities, the ANN technique is 

currently becoming a preferred strategy in fault 

diagnostics. In Amin and Mahmood-ul-Hasan,14 

the HFTCS was proposed with Kalman Filters in 

the active part and a high-gain PI controller in 

the passive part. This algorithm was limited to 

the linear range of the highly nonlinear sensors 

of the AFR control system. In Su et al.,15 the 

HFTCS was proposed for the sensors of the 

distillation column without using any intelligent 

control or data-driven technique. In Wang et 

al.,16 the HFTCS was proposed for the uncertain 

networked control systems under a discrete 

event-triggered communication scheme that was 

not applied to the process plant. In Yang et 

al.,48 the authors focused on faulttolerant 

control of Markov jump systems (MJS) with Itoˆ 

stochastic process and output disturbances. A 

proportional-derivative sliding mode observer 

(SMO) and an observer-based controller are first 

devised and fabricated. In Yang et al.,49 the 

authors provided a fault-tolerant compensation 

control strategy for Markov jump systems 

against nonlinearity, simultaneous additive, and 

multiplicative actuator failures. A fuzzy logic 

system (FLS) was used to estimate the nonlinear 

functions and by using the adaptive 

backstepping approach, an FLS-based adaptive 

fault-tolerant compensation controller is 

developed. The proposed methods worked very 

well for the stochastic disturbances and 

simultaneous additive and multiplicative type 

faults in the actuators. However, the stochastic 

delays and actuator faults were not studied in 

this paper. The proposed HFTCS has PFTCS for 

AFR control, which is based on SMC, and 

AFTCS based on ANN. With the use of a fuel 

throttle actuator, the proposed HFTCS will 

compensate for the AFR degradation by the 

AFR control. In the proposed system, SMC will 

form the passive part to react instantly to faults 

while ANN will optimize post-fault performance 

with active compensation as shown in Figure 5. 

The previous works mentioned in the literature 

have not yet utilized any intelligent control 

technique like ANN for the AFTCS and regular 

sliding mode control for the PFTCS, as proposed 

in this paper. The proposed model was found to 

be robust to faults in the normal and noisy 

conditions of the sensors. Therefore, the 

proposed HFTCS with ANN and SMC presents 
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an optimum and reliable solution for AFR 

control in SI IC engines. Table 7 provides a 

comprehensive comparison of the suggested 

strategy with previously used strategies.  

 
Conclusions 

In this paper, a novel HFTCS was proposed for 

the AFR control of the IC engine based on the 

advanced non-linear controllers: ANN and 

SMC. With the use of a fuel throttle actuator, the 

proposed HFTCS was able to compensate for the 

AFR degradation with SMC that formed the 

passive part to react instantly to faults while 

ANN was able to optimize post-fault 

performance with active compensation. The 

Lyapunov stability analysis was also performed 

to make sure that the system remains stable in 

both normal and faulty conditions. The fault 

tolerance was checked with noisy measurements 

of sensors to examine the robustness of the 

proposed controller. The simulation results in 

the Matlab/Simulink environment show that the 

designed controller is robust to faults in normal 

and noisy measurements of the sensors and 

reliable. Furthermore, a comparison with the 

existing works was also carried out to 

demonstrate its superior performance. Future 

works may include the design of HFTCS with 

modern control techniques known as Deep 

learning with Adaptive SMC, Neuro-Fuzzy 

SMC, and Integral SMC by testing at higher 

speeds considering load variations. Partial faults 

may also be considered with these techniques 

with experimental verification using the 

hardware-in-the-loop technique. Another 

direction is to consider the stochastic delays for 

the fault-tolerant AFR controller design. 
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