

7518

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

Enhancing Software Quality through Meta-Heuristic Algorithm for Optimized Test

Case Execution Prioritization and Effective Fault Detection

Priti Singh, Hari Om Sharan , C.S. Raghuvanshi

Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India

preetirama05@gmail.com

Abstract

Software testing is a critical phase in the software development lifecycle, aimed at ensuring

the reliability and functionality of software modules or applications. It involves rigorous

examination of software artifacts and behavior to validate its functionalities and identify any

potential errors. The ultimate goal of software testing is to enhance the overall quality of the

developed software, thereby bolstering customer satisfaction and maximizing profitability in

the software market. While various methods and tools have been employed for software

testing in the past, many fail to provide comprehensive guidelines for improving software

quality. Moreover, existing testing frameworks often lack stage-by-stage output with precise

error definitions, hindering effective error mitigation strategies. Additionally, regression

testing models reliant on feedback mechanisms tend to introduce computational and time

complexities. To address these challenges, the prioritization of test cases (PTC) emerges as a

pivotal process for enhancing fault detection rates and refining error descriptions to elevate

software quality. In this context, this study leverages an Extended FireFly Algorithm (EFFA)

to formulate an advanced prioritization methodology. The EFFA capitalizes on the swift and

efficient search capabilities of the FireFly Algorithm (FFA), significantly enhancing fault

detection accuracy while mitigating inherent drawbacks. Implemented and tested within the

DOTNET software environment, the proposed EFFA prioritization methodology

demonstrates superior performance metrics, as evidenced by improved Fault Detection Rates

(FDR) and reduced processing times.

Keywords: Test Case Prioritization, Test Case Minimization, Whale Optimization, Rider

Optimization, Fault Detection Rate, Precision, Recall, F-Measure.

Introduction

Testing is the major process that plays a vital role in software development and

various software application development. Software Testing (ST) is one of the significant

tasks in the software development life cycle. The ST process is divided into two parts as

manual and automated testing. In manual testing, the human is involved in testing the

software, but a software tool is used to test the newly developed software in automated

testing. In recent times, the software industry plays a King role in the industry of computing

and information technology. Information processing and computing complexity is reduced in

terms of accuracy in calculation and processing time.

7519

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

Table-1. Essential Features of Test Cases

Thus, it requires software testing model to identify and detect faults for enhancing the

software quality. Although a software system is tested efficiently, it might require certain

functionalities to be implemented. During regression testing, the software system gets altered.

Even after alternation, the system's standard is also well maintained [1].

The test case is the primary and essential factor of software engineering which helps

to examine the software quality. In any software testing the primary factors (test cases) are

considered initially to determine the other additional factors in the testing process in

accordance to the application. Before developing a test case, it needs to obtain knowledge

about the system's needs. For that, user requirements, use case models, developer notes, and

other factors are referred to. The test case designer should discuss the development section

with the team leader, project manager, and other team members. The major features used in

the TCP process is given in Table-1.

The elements given in Table-1 vary for various test cases. Prioritising the execution

order of the test cases is focussed as the major research problem. To do that, designing a good

test case is more important. Several TCP methods are available in the software development

and testing industries. But recent testing industries worldwide use only seven TCP methods,

shown in Figure-1. This paper uses the type-2, type-2, type-3, and type-4 shown in Figure-1

to increase the fault detection rate, decreasing the time, through which the ratio of the fault

detection with enhanced software quality.

7520

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

Figure-1. Various Categories of Test Case Prioritization Methods

While using regression testing, a significant amount, such as
2

3
 of the entire budget is

utilized for software testing and its maintenance; hence, this testing method is quite expensive

[2]. Thus50% of the cost is utilized [3]. In cases like critical software systems, regression

testing requires more efficiency in the testing process.

Table-1. Statistical Information of Features of Test Cases

The test cases are prioritized based on their attributes; hence it is essential to optimize

them effectively and reduce fault detection time. For example, 5 test cases and their attributes

are given in Table-2. The table shows that TC3 and TC4 are superior to others since their

faults are detected earlier and speedily. Comparing other testing techniques with the proposed

regression technique, the primary difference is that it reuses the software test module of the

previous software version. However, in some test cases, the test modules run all the test cases

involved in that modules. For this, it requires more effort. Consider an example where the

software system contains40,000 lines of codes, in which the time it takes to run all the 40,000

lines of codes might take many weeks or a month to run the whole test module [4, 5]. Hence

another technique must be adopted to reuse test modules more competently.

Most of the earlier methods like regression testing consumes more cost and some of

them have tried to reduce the cost of it. In the earlier days, several methods arose to reduce

the cost of regression testing. A similar set of testing is selected and executed to minimize the

cost of testing process. For lowering the validation suite, an EFF method is introduced to

group the sets that helps to cover the overall test scenario. Moreover, the earlier techniques

have focussed on fault detection during the testing process. Based on the faults detected, time

taken for fault detection, and the cost are increased. Thus, the earlier approaches may not be

suitable for all the test cases while selecting the subset. Ordering & reusing the test case also

7521

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

helps to increase the software quality and minimize errors. A technique is introduced to

schedule the test cases to attain an output efficiently. The test cases run depending upon the

size of the validation suite. Planning the test case is optimal if the validation suite is extended.

Firstly, preparing the test case at the initial level helps to overcome the time and resource

restrictions.

Choosing the test and reducing the cost plays a vital role in prioritizing techniques. In

a smaller validation suite, scheduling takes place after the selection and reduction. Scheduling

technique varies from one to another. 𝐸𝐹𝐹 method is implemented in this paper to schedule

the test cases. Mainly, the scheduling is based on information gathering and finding errors.

Thus, the performance is calculated and compared to the other techniques. The developer can

quickly identify the errors earlier while increasing the fault rate. Thus, 𝐸𝐹𝐹method is

implemented for enhancing its performance & improving the detection of fault rate. Several

definitions for the defects, mistake, error, failure, and fault are discussed in IEEE Standard

Glossary of Software Engineering Terminology" [24, 25]. An incorrect output obtained is

termed as a “mistake”. So any kind of defects may occur in the software module, which needs

to be identified and corrected before delivering to the customer.

Contribution of the Paper

 In this paper, an Extended FireFly Algorithm is proposed for TCP, and it incorporates

local and global searching strategies.

The EFFA detects the faults in the test cases faster using distance customization and data

emphasizing.

This EFFA uses various benchmark test case datasets in the experiment for further

verification.

The obtained results are compared with the existing methods in terms of Fault Detection Rate

and process time. The overall process of the proposed model is depicted in Figure-2.

Figure-2. Contribution of Paper

Literature Survey

In this paper, the EFF method is implemented and compared with some existing

techniques, such as prioritizing test cases. Some of the widely used regression techniques are

SVM [6], K–Nearest Neighbour (KNN) [7]) logistic regression [8], and some specific

techniques from neural networks [9]. Ensemble learner [10] is created by joining all the

outputs of various SVM. For estimating the performance of the EFF method and proving its

efficiency, we have evaluated three complex industrial systems here.

7522

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

In 2019, Nayak S. et al. [11] analyzed the general model of TCP to improve the FDR

and process time. Various factors such as FDR, number of errors detected, the ability of the

test case with respect to error detection and their suitability. The resulting test scenario

requirement is analyzed using other prioritization techniques. The consequence of the

strategy shows a higher standard level of a detected fault. In 2016 Ammar, A. et al. [12]

analyzed an improved method for organizing the entire test suite without utilizing random

positioning. The ability of the method was verified by testing with the controlled model. In

2016, Ansari A. et al. [13] examined test priority techniques that require test cases to be put

together to ensure that well-designed test cases have significant deficiencies. In their article,

the ACO was used as the priority process to minimize the cost and effort. The study results

showed that the organization of test cases limits the time, effort, and cost of the test and finds

significant flaws in the software. In 2010 Huang, C.Y., et al. [14] developed a weighted

opportunity flow chart to understand the unweighted graphical user interface of the test case

with the position. From the experiment, the efficiency is verified in terms of FDR and time.

Jeffrey, D. et al. [15] in 2008 analyzed a strategy to organize test cases that detect the

faults present in the program using a value profile-based approach. It alters the values that

causes failure in execution to produce the desired output. The point-by-point trial study and

results give fascinating bits of knowledge into the viability of utilizing necessary cuts for test

case prioritization to accomplish a high pace of fault detection. In 2020, Taneja, D. et al. [16]

analyzed test case reductions in object-oriented (OO) testing. Freely accessible information

identified with Open-Source Software have been utilized for framework assessment. A linear

regression (LR) model containing faulty information and different object-oriented estimations

for insurance have been created. The cost estimation is depending on the weight of the test

cases and the methodology empowered in the software programming.

In 2020, Mohapatra, S.K. et al., [17] developed a local search for test case

minimization (TCM). In their work, they attempted to utilize an intelligent search algorithm

to tackle the TCM issue. They found that the technique could give delegate packages quickly.

From the tests, it was discovered that the delegate set blunder detection limit was 100%. The

RF factor for all subjects was 0.0, and the RS factor was higher on STAGE contrasted with

different strategies. Trial perceptions and results investigation recommends that the

methodology has a beneficial application. In 2018 Hashim, N.L et al. [18] developed a TCP

method using FFA algorithm and obtained reduced complexity with the cost.

Limitation and Motivation

 From the detailed survey carried out, one can understand that the earlier research

works have not calculated the reliability of the similarity of the test cases. Some of the earlier

methods estimated distance for only one string, which is not solving the redundancy problem

since space weight is equal for all the TCs. The ranking process done by the earlier methods

is not practical, for example, Swarm Intelligence and other algorithms in [25-27]. One of the

significant problems of most of the earlier methods is time complexity. Thus, this paper aims

to solve the above-said problems by integrating the hybrid model with the nature-inspired

algorithm. That helps solve problems by providing ample search space and more iterations,

which can also be customized. It uses local as well as global searching methods.

7523

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

 Software Testing

One of the significant tasks in the software development life cycle is software testing,

where it executes a software module to examine the output following the input data. The

software testing is introduced in a precise manner using some notations as:

Let 𝑺𝑴 be the software module, 𝑰 be the input feed into 𝑺𝑴, and the correct

hypothetical version of the 𝑺𝑴 is 𝑭. A test case 𝒕 is considered an element of 𝑰, where each 𝑰

is the member of the test suite 𝑻, and for all test case 𝒕, a failure condition is verified by

𝑷(𝒕) ≠ 𝑭(𝒕). In case if there are no faults generated by 𝑻, then it doesn't mean that the quality

of the 𝑆𝑀 is 100% correct because generally, 𝑰 is infinite. However, if the design of 𝑻 is

accurate, it is assured that the quality of 𝑺𝑴 is high. During the testing process, the 𝑺𝑴 is

modified and copy it as 𝑺𝑴′, and the create 𝑻 for testing 𝑺𝑴. There are two different

categories of information used in the EFF prioritization method to arrange the execution in

such as manner to maximize the objective function, such as reducing the errors and

increasing the quality in the 𝑺𝑴. The first category is coverage information (CI) based on

prioritizing the test cases. The second is fault-exposing-potential (FEP) information for

estimating the ability of the test cases regarding fault detection in the EFF Prioritization

Method. The CI-based PM involves the control-flow-graph method, Node, edge, and test

history coverage. At the same time, the FEP based PM uses different probability values

calculated to estimate the ability of EFF PM. They are Execution, Infection, and Propagation

probabilities. But adding more coverages, the cost of the test cases is increased. But, one of

the main aims of this paper is to decrease the size of the 𝑻 rather than scheduling the

execution of the 𝑻.

Problem Statement of Test Case Prioritization

The Test Case Prioritization (TCP) is used to schedule all the test cases for increasing

the value of the Objective Function (OF). The prioritization mainly focuses on expanding the

similarity ratio to make the OF better by executing the TC in a particular order.

Given

The test suit 𝑇 is considered a test suite, the permutations of 𝑇 is calculated as 𝑃𝑇, and

a function 𝑓 is used for relating 𝑃𝑇 to real numbers.

Problem

 Obtain 𝑇′ ∈ 𝑃𝑇, 𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡, (∀𝑇′′)(𝑇′′ ∈ 𝑃𝑇)(𝑇′′ ≠ 𝑇′)[𝑓(𝑇′) ≥ 𝑓(𝑇′′)]

Thus, the hybrid model generates the set of all TCs for obtaining the best test sequences to

assign the priority for executing them.

Hybrid Model Construction

 The proposed EFF algorithm is a hybrid algorithm that incorporates two significant

functions: customizing the distance and data emphasizing. The correlation coefficient matrix

is used to measure distance customization, whereas TFIDF (Text Frequency In Data

Frequency) measures data highlighting. The hybrid process is carried out into two levels. In

the first hybrid process, the distance customization process is carried out. The term string

spacing is used to measure the counts of the test cases, whereas distance customization is

used for measuring the string spacing that occurred in various test cases expressed

mathematically

7524

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

 (1)

In equation-(1), 𝒍𝒆𝒗𝒂,𝒃(𝒊, 𝒋) denotes the distance customization among the TCs a and b(𝒊, 𝒋)

denotes the indexes, 𝒂𝒊 is the 𝒊𝒕𝒉character in 𝒂, and 𝒃𝒋 denotes the 𝒋𝒕𝒉character in 𝒃, where the

distance is calculated by

𝒅𝒊 = 𝒍𝒆𝒗𝒂,𝒃(𝒊, 𝒋) (2)

From equation 2, the overlapped distance for the same test cases is obtained by,

𝑷𝒊 = 𝒎𝒂𝒙(𝒊, 𝒋) − 𝒍𝒆𝒗𝒂,𝒃(𝒊, 𝒋) (3)

The distance customization (dc) is calculated as

𝑸𝒊 = 𝒍𝒆𝒗𝒂,𝒃(𝒊, 𝒋) (4)

From equation–(3), the similarity coefficient is calculated for the test cases 𝒂 and 𝒃 is,

𝑺𝒊,𝒋 =
∑ 𝑷𝒊𝑸𝒊

𝒅
𝒊=𝟏

∑ 𝑷𝒊
𝟐+∑ 𝑸𝒊

𝟐−∑ 𝑷𝒊𝑸𝒊
𝒅
𝒊=𝟏

𝒅
𝒊=𝟏

𝒅
𝒊=𝟏

 (5)

From the 𝑆𝑖,𝑗, the correlation coefficient matrix 𝑀𝑖 is obtained using the following equation:

𝑀𝑖 =

[

0 𝑆1,2 … 𝑆1,𝑛

𝑆2,1 0 … :

: … … 𝑆𝑛−1,𝑛

𝑆𝑛,1 … … 0]

 (6)

The second level of the hybrid process estimates the significance of the data emphasizing

with the help of finding the number of test data 𝑛𝑘,𝑗 that occurred in each test case, and it is

calculated as,

𝒕𝒇𝒊𝒅𝒇𝒊,𝒋 =
𝒏𝒊,𝒋

∑ 𝒏𝒌,𝒋𝒌
∗ 𝒍𝒐𝒈

|𝑫|

|{𝒅:𝒅∋𝒕𝒊,𝒋}|
 (7)

It significantly denotes the DE of unique test cases, where,

 𝑛𝑖,𝑗 → The number of times the term occurred in test case d.

|{𝑑: 𝑑 ∋ 𝑡𝑖,𝑗}| → # of test data 𝑡𝑖,𝑗present in 𝑑.

|𝐷| → # test cases

𝑡𝑖,𝑗 → denotes the 𝑖𝑡ℎ test data present in 𝑗𝑡ℎ test case.

The above-said levels of the hybrid process are integrated with the Firefly algorithm to design

the Extended Firefly algorithm, explained below.

Extend FFA

In the EFFA, all the parameters are initialized at the beginning.

Step-1: The FF agents are initialized by the brightness value is:

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖,𝑗 = 𝑤𝑖 (
𝑛𝑖,𝑗

𝛴𝑘𝑛𝑘,𝑗
∗ 𝑙𝑜𝑔

|𝐷|

|{𝑑:𝑑∋𝑡𝑖,𝑗}|
)⁄ (8)

𝑤𝑖 denotes the weight factor value assigned to the 𝑖𝑡ℎ test case.

Step-2: Evaluation Criteria

For evaluating the proposed EFFA, the APFD value is calculated. The authors in [19]

utilized APFD for detected fault rate in TCP experiments. The technique used for optimal

sequencing in this experiment. This paper assigns 0 to 100 as the range for attaining the

7525

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

APFD. From the value, the more significant value shows the better failure rate detection. It

can be expressed using the value APFD formula is as:

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1+𝑇𝐹2+𝑇𝐹3+⋯+𝑇𝐹𝑁

𝑛×𝑚
+

1

2𝑛
 (9)

𝑛 → total number of test case sets

𝑚 →number of defects in the software module

𝑇𝐹𝑖 →number of defects (𝐼) identified at 𝑖𝑡ℎ location

𝐹𝑎𝑢𝑙𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒 ← 𝑚𝑎𝑥 (𝐴𝑃𝐹𝐷) (10)

The enormous value of the term APFD denotes the fast fault detection rate.

EFFA Prioritization Model

 The previous section explained the initialization of various preset parameters under

various constraints needed for the EFF algorithm. This section provides the basic principles

of the EFF algorithm and utilizes the same in the TCP environment. Also, it gives

information about the functionalities of the hybrid model based on EFFA. Before

implementing the EFFA, the FF algorithms need to be understood clearly, as shown in the

following section.

Firefly Algorithm

 The fireflies get attracted to each other by their brightness value. Thus, the objective

function is created based on the brightness emitted.

𝑂𝐹𝑉 = 𝑚𝑎𝑥 (𝑓(𝑥𝑖,𝑗)) (11)

Based on this, a new optimization algorithm is created. In Figure-1, the full functionalities of

the FF algorithm are illustrated.

Considerations

1. All fireflies are attracted to each other. And fireflies can attract other flies

dynamically.

2. Considers the OFV of the problem.

3. The fireflies get attracted only because of their brightness. The other species get

attracted to fireflies when their brightness is high.

4. If no brightness is emitted, the flies move randomly in search of bright light.

5. To continue the above process until all the flies, get visited.

Figure-1 illustrates the entire functionalities of FFA used in the software testing

environment. Initially, the objective function is defined for finding the solution to the

problem. Then, the flies' distance matrix and brightness attraction level are calculated. By

encoding them the degree of FF, attraction is calculated. The movements of all flies depend

on the brightness value of the flies. The movements of the fireflies are stopped when all the

flies get visited. The entire flight paths are accounted for finding the optimal way. Thus, the

optimal TCs are represented by the shortest path of the flies.

Extended Firefly Algorithm

 The FF algorithm is extended into EFFA which provides importance to the searching

ability. The optimal flies are obtained from local to global candidate set. The distance

customization is calculated for choosing the optimal move to get the next target. The entire

task of the EFFA is given below:

The OF is to be optimized and formulated using the brightness value. The fitness function

value of the EFFA is created by:

7526

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

𝑚𝑎𝑥 (𝑓(𝑥𝑖,𝑗)) = 𝑚𝑎𝑥𝑘 {
𝑊𝑖−1

𝑅𝑎𝑛𝑑𝑜𝑚(∙)
∗ 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖,𝑗|𝑖 − 1 ∈ 𝑎𝑟𝑟𝑛𝑎𝑔𝑒𝑑, 𝑖 ∈ 𝑢𝑛𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑}

(12)

Were,

𝑊𝑖−1 →denotes theTC weight

𝑖 − 1 →indicates the test case number

𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑑 → says the index of the TC; based on that, the priority is determined.

𝑈𝑛𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑑 → says the index of the TC where their priority is not specified.

𝑅𝑎𝑛𝑑𝑜𝑚(∙) =

𝑓(𝑥𝑖,𝑗) → is the fitness function value for 𝑥𝑖,𝑗

𝑘 → number of test cases with highest FF value, till not visited and included in 𝑆𝑒𝑡𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.

The EFF algorithm is written as a sequence of steps, as:

Algorithm_EEFA()

{

1. Initialize the OFV, BV, FA.

2. Set all the parameters 𝜷, 𝜶, 𝜸, 𝜺𝒕, and maximum generation.

3. The 𝑿𝒊 and 𝑿𝒋 has the information about the firefly agent 𝑥𝑖,𝑗.

4. Let 𝑇𝑏𝑒𝑠𝑡 be the optimal test sequences, executed in the order.

5. Update BV, OF, and FA by creating the 𝑓(𝑥𝑖,𝑗) for the 𝑎𝑔𝑒𝑛𝑡 − 𝑗 of the 𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒 − 𝑖.

6. Apply 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑖,𝑗 = 𝑤𝑖 (
𝑛𝑖,𝑗

𝛴𝑘𝑛𝑘,𝑗
∗ 𝑙𝑜𝑔

|𝐷|

|{𝑑:𝑑∋𝑡𝑖,𝑗}|
)⁄ for initializing 𝑥𝑖,𝑗 value as the entry of

the FA.

7. A node is called 𝑋𝑖 when reaches the FA. The formula used to update the distance of 𝑋𝑖 is

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛽𝑒−𝛾𝑆𝑖,𝑗
2

(𝑋𝑖
𝑡 − 𝑋𝑗

𝑡) + 𝛼𝜀𝑡 (13)

 In the above equation, 𝛽 and 𝛼 represent the constants. The absorbing the light rate is

denoted by 𝛽, and is commonly considered as 1. The value of 𝛼 ∈ [0,1], 𝜀 is the random factor

used for constant distribution. The attraction coefficient is denoted as 𝛾, similarity coefficient

𝑆𝑖,𝑗 finds the similarity between 𝑋𝑖 and 𝑋𝑖, stored in 𝑀𝑠.

8. Next, Node is selected using a selection strategy, follows the steps as:

The distance is calculated for nodes in 𝑆𝑒𝑡𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and 𝑋𝑖
𝑡 using the equation-(13)

Choose the Node having the smallest distance 𝑋𝑖+1
𝑡 for (𝑖 + 1)𝑡ℎ sequence.

Based on the movement of FA, the path is recorded, and the corresponding Node's

distance 𝑋𝑖+1
𝑡 is updated in the hybrid model.

Repeat all processes given in step-5 until the 𝑈𝑛𝐴𝑟𝑟𝑎𝑛𝑔𝑒𝑑 becomes empty.

9. Obtain the set of all optimal sequences, with:

Restore all initial constraints with the position of the TC is to starting position.

Repeat the above processes given in steps 1 to 6.

Return the result as the optimal test sequences from the entire flight path.

Datasets

To implement, experiment, and evaluate the performance of the proposed EFFA,

some of the benchmark datasets are used. Some of the Software Artifacts Infrastructure (SAI)

7527

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

repositories are Flex [20], GZIP [20, 21], and GREP [20, 22], with their program execution

commands, which are referred from [23]. The details of the dataset are given in Table-2.

Table-2. Dataset and Details

Dataset Error Version No. of. Test Cases

Flex [20] 21 567

GZIP [20, 21] 55 217

GREP [20, 22] 17 809

Experimental Results and Discussion

In addition to the experiment carried out using the benchmark datasets, the proposed

EFF algorithm is evaluated by applying the same in real-time applications such as Hospital

Management and Library Management systems. The total size of the HM and LM application

is 74702 and 715682, respectively. The following are the different evaluation metrics used to

estimate the performance of the proposed method for prioritizing and minimizing test cases.

For evaluating the performance of the proposed EFF algorithm, some of the performance

measures are calculated. Also, the performance of the proposed method is estimated

according to the FDR, precision, recall, and F-measure.

Precision

Failure in the TCs is measured through Precision value which gives the ratio of failure out of

total set 𝑇𝐶𝐹 ⊆ 𝑇𝐶, which has been selected in a test set 𝑇𝑆 ⊆ 𝑇𝐶

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃

Where 𝑇𝑃represents the true positive and 𝐹𝑃 represents the false positive.

Recall

Recall is the overall wrong classification of TCs detection from the test set. The more

failure test cases are accurately chosen based on the highest score is:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃

Where TP represents the true positive and FN represents the false negative.

F1-Score

One of the other performance measures is F-Score, which is also calculated to

evaluate the performance using the following formula as:

𝑭 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 = 𝟐 × (
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍
)

Fault Detection Rate (FDR)

 One of the important factors used in this paper is FDR, used to verify the overall

performance of the test cases. The average value obtained for the FDR is from 0 to 100. The

highest value indicates the betterness and lowest value indicates the poorness of the method.

It can be understood by the mathematical expressions, such as:

Let

 T -> test suit = {tc1, tc2, tc3,…tcn}and

7528

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

F = m faults find by T

Where T’ = order(T)

TF(i) denotes the faults obtained from 𝑖𝑡ℎ test-case and the fault is fault-i. The average FDR

obtained during the execution of TC is estimated as:

𝐴𝑣𝑔(𝐹𝐷𝑅) = 1 −
𝑇𝐹𝑖 + 𝑇𝐹𝑖 + ⋯+ 𝑇𝐹𝑖

𝑛𝑚
+

1

2𝑛

The performance of the proposed EFF algorithm is compared with the other methods

regarding APFD and execution time. The comparison has been carried out using various

benchmark datasets.

For evaluating the performance, the existing methods FA, GREEDY, HRA, PSO, and

the proposed EFFA are examined individually over various datasets, and the APFD is

calculated. Table-4 shows the performance comparisons on the FIEX dataset. Table-5 shows

the performance comparisons on the GREP dataset. Table-6 shows the performance

comparisons on the GZIP dataset. From the overall comparison, it has been found that the

proposed EFFA obtained a very good APFD than others.

Table-3. Performance Comparison of APFD For FIEX Dataset

 APFD FA GREEDY HRA PSO EFFA

0.954 0.942 0.956 0.949 0.976

 Table-4. Performance Comparison of APFD For GREP Dataset

APFD FA GREEDY HRA PSO EFFA

0.952 0.933 0.953 0.940 0.968

 Table-5. Performance Comparison of APFD For GZIP Dataset

APFD FA GREEDY HRA PSO EFFA

0.951 0.934 0.949 0.939 0.971

Once again, the performance is compared by repeating the execution for various

datasets for various test cases from multiple test case sets. Table-6 shows the performance

comparison among the earlier and proposed EFFA on FIEX dataset with 20 TCs. For all the

TCs, the obtained APFD using EFFA is high than others.

Table-6. Performance Comparison of APFD For FIEX Dataset (20 Test Cases)

7529

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

The comparison of performance factors with the earlier methods is given in Table-7

with respect to GREP dataset with 20 TCs. For all the TCs, the obtained APFD using EFFA

is high than others. Table-9 shows the comparison of performance factors between earlier and

proposed EFFA on GZIP dataset with 20 TCs. For all the TCs, the obtained APFD using

EFFA is higher than others.

Table-7. Performance Evaluation (FDR For GREP (20 Test Cases))

Table-8. Performance Evaluation (FDR For GZIP (20 Test Cases))

7530

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

Findings

1. EFFA obtained the highest mean APFD and less time complexity for the custom

dataset.

2. EFFA obtained higher APFD for multiple datasets comparing with GREEDY, PSO,

FA, HFA, and EFFA.

3. EFFA obtained high APFD for 20 TCs from various datasets.

Conclusion

This study is dedicated to the development and deployment of a test case prioritization

framework leveraging nature-inspired algorithms. Specifically, an Extended Firefly

Algorithm (EFFA) is engineered as a hybrid model, combining customized distance metrics

and data emphasis with the Firefly Algorithm (FFA) to optimize the efficiency of the

prioritization process. Implemented within the DOTNET software environment, the EFFA

methodology undergoes rigorous validation to assess its efficacy. Performance evaluation

metrics including Average Percentage of Faults Detected (APFD), time complexity across

multiple datasets, and total test cases (Tcs) are meticulously analyzed. Comparative

assessments against established methodologies provide valuable insights into the superiority

of the proposed EFFA. The experimental findings underscore the effectiveness of the EFFA

approach, as evidenced by superior APFD scores and reduced time complexities when

compared to existing methods.

Future Work

The precision, recall, and F-score values are compared in the experiment, and the

performance is evaluated in future work.

References

[1]. G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques. IEEE

Transactions on Software Engineering, Vol. 22, No. 8, pp. 529-551.

[2] R. Pressman. Sojtw. Eng.: A Practitioner's Approach. McGraw-Hill, New York, NY,

1987.

[3] H.K.N. Leung and L. White. Insights into regression testing. In Proc. of the Conf. on

Software. Maintenance., pages 60-69, October 1989.

[4] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma. Regression testing in an

industrial environment. Comm. of the ACM, 41(5):81-86, May 1988.

[5] G. Rothermel, M.J. Harrold, J. Ostrin, and C. Hong. An empirical study of the effects of

the minimization on the fault detection capabilities of test suites. In Proc. of Conf. on Sojtw.

Maint., pages 34-43, November 1998.

[6] T. Joachims, "Optimizing search engines using clickthrough data". In Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining

(KDD '02). ACM, pp. 133-142. doi: 10.1145/775047.775067

[7] I. H. Witten, E. Frank, and M. A. Hall. 2017. Data Mining: Practical Machine Learning

Tools and Techniques (4th ed.). Morgan Kaufmann Publishers Inc. ISBN: 978-0-12-804291-

5

[8] D. W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant. Applied logistic regression. Vol.

398. John Wiley & Sons, 2013. doi:10.1002/9781118548387

7531

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

[9] I. Goodfellow, Y.Bengio, A. Courville, "Deep learning". Vol. 1. Cambridge: MIT press,

2016. ISBN: 0262035618

[10] H. K. N. Leung and L. White, "Insights into regression testing (software testing),"

Proceedings. Conference on Software Maintenance, 1989, pp. 60-69. doi:

10.1109/ICSM.1989.65194

[11]. Nayak, S., Kumar, C., & Tripathi, S. (2017). Enhancing Efficiency of the Test Case

Prioritization Technique by Improving the Rate of Fault Detection. Arabian Journal for

Science and Engineering, 42(8), 3307–3323.

[12]. Ammar, A., Baharom, S., Ghani, A.A.A. and Din, J., 2016, December. Enhanced

weighted method for test case prioritization in regression testing using unique priority value.

In 2016 International Conference on Information Science and Security (ICISS) (pp. 1-6).

IEEE.

[13]. Ansari, A., Khan, A., Khan, A., & Mukadam, K. (2016). Optimized Regression Test

Using Test Case Prioritization. Procedia Computer Science, 79, 152–160.

[14]. Huang, C.-Y., Chang, J.-R., & Chang, Y.-H. (2010). Design and analysis of GUI test-

case prioritization using weight-based methods. Journal of Systems and Software, 83(4),

646–659.

[15]. Jeffrey, D., & Gupta, N. (2008). Experiments with test case prioritization using relevant

slices. Journal of Systems and Software, 81(2), 196–221.

[16]. Taneja, D., Singh, R., Singh, A. and Malik, H., 2020. A Novel technique for test case

minimization in object oriented testing. Procedia Computer Science, 167, pp.2221-2228.

[17] Mohapatra, S.K., Mishra, A.K. and Prasad, S., 2020. Intelligent Local Search for Test

Case Minimization. Journal of The Institution of Engineers (India): Series B, pp.1-11.

[18]. Hashim, N.L. and Dawood, Y.S., 2018. Test case minimization applying firefly

algorithm. International Journal on Advanced Science, Engineering and Information

Technology, 8(4-2), pp.1777-1783.

[19]. Hutchins, M. and Foster, H. and Goradia, T. and Ostrand, T., "Experiments on the

effectiveness of dataflow- and control flow-based test adequacy criteria", Proceedings of the

16th International Conference on Software Engineering, May, 1994, pages 191-200.

[20]. https://sir.csc.ncsu.edu/portal/usage.php

[21] https://docs.oracle.com/cd/E36784_01/html/E36870/gzip-1.html

[22] https://docs.oracle.com/cd/E88353_01/html/E37839/gzgrep-1.html

[23] https://alvinalexander.com/blog/post/linux-unix/how-grep-search-compressed-gzip-gz-text-file/

[24]. P. Bourque and R.E. Fairley (eds), Guide to the Software Engineering Body of

Knowledge, Version 3.0, IEEE Computer Society, 2014; Available athttp://www.swebok.org

[25]. Piscataway, NJ, USA: The Institute of Electrical and Electronic Engineers, Inc. (IEEE).

Available at: http://www.computer.org/portal/web/swebok.

[26]. P. R. Srivatsava, B. Mallikarjun, and X. S. Yang, "Optimal test sequence generation

using firefly algorithm," Swarm Evol. Comput., vol. 8,pp. 44– 53, Feb. 2013.

[26]. Amir Hossein Gandomi, Xin She Yang, Amir Hossein Alavi, Mixed variable structural

optimization using Firefly algorithm, Computers and Structures 89 (23–24) (2011) 2325–

2336.

https://sir.csc.ncsu.edu/portal/usage.php
https://docs.oracle.com/cd/E36784_01/html/E36870/gzip-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/gzgrep-1.html
https://alvinalexander.com/blog/post/linux-unix/how-grep-search-compressed-gzip-gz-text-file/
http://www.computer.org/portal/web/swebok

7532

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

[27]. M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed and M. D. Mohamed

Suffian, "Test Case Prioritization Using Firefly Algorithm for Software Testing," in IEEE

Access, vol. 7, pp. 132360-132373, 2019.

[28] SK Hasane Ahammad, , D. K. J.Saini, Phishing URL detection using machine

learning methods, Advances in Engineering Software,Volume 173, 2022,103288, ISSN 0965-

9978, https://doi.org/10.1016/j.advengsoft.2022.103288

[29] Yadav, P, S. Kumar, and D. K. J.Saini. “A Novel Method of Butterfly Optimization

Algorithm for Load Balancing in Cloud Computing”. International Journal on Recent and

Innovation Trends in Computing and Communication, vol. 10, no. 8, Aug. 2022, pp. 110-5,

doi:10.17762/ijritcc.v10i8.5683.

[30] Jang Bahadur, D. K. , and L.Lakshmanan. “Enhancement of Quality of Service Based

on Cross-Layer Approaches in Wireless Sensor Networks”. Journal of Theoretical and

Applied Information Technology ISSN: 1992-8645, 15th October 2022. Vol.100. No 19 ,

[31] Jang Bahadur, D. K. , and L.Lakshmanan. “Virtual Infrastructure Based Routing

Algorithm for IoT Enabled Wireless Sensor Networks With Mobile Gateway”. International

Journal on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 8,

Aug. 2022, pp. 96-103, doi:10.17762/ijritcc.v10i8.5681.

[32] Shailesh Kamble, Dilip Kumar J. Saini, Vinay Kumar, Arun Kumar Gautam, Shikha

Verma, Ashish Tiwari & Dinesh Goyal (2022) Detection and tracking of moving cloud

services from video using saliency map model, Journal of Discrete Mathematical Sciences

and Cryptography, 25:4, 1083-1092, DOI: 10.1080/09720529.2022.2072436

[33] Jang Bahadur, D. K. , and L.Lakshmanan “Improve Quality of Service in

Optimization of Job Scheduling using a Hybrid Approach” Xi'an Shiyou Daxue Xuebao

(Ziran Kexue Ban)/ Journal of Xi'an Shiyou University, Natural Sciences Edition ISSN:1673-

064X Vol: 65 Issue 01 | 2022 DOI 10.17605/OSF.IO/DW57E

[34] Jang Bahadur, D. K. , and L.Lakshmanan “Wireless Sensor Network Optimization for

Multi-Sensor Analytics in Smart Healthcare System” Specialusis Ugdymas, ISSN NO: 1392-

5369 Vol. 1 No. 43 (2022)

[35] Saini D., An IoT and fog computing enabled intelligent health care monitoring system

to the cloud storage, Turkish Journal of Computer and Mathematics Education

(TURCOMAT) Vol12 No10(2021), 2085-2091(ISSN: 1309-4653) Scopus Indexed

https://turcomat.org/index.php/turkbilmat/article/view/4722

DOI: https://doi.org/10.17762/turcomat.v12i10.4722

[36] Saini D, Novel Approach of Data Transformation for Privacy Assurance using

Optimization of Genetic Algorithm, Design Engineering (Toronto) ISSN No:0011-9342

Scopus Indexed

[37] D. K. Jang Bahadur Saini, P. Patil, K. Dev Gupta, S. Kumar, P. Singh and M.

Diwakar, "Optimized Web Searching Using Inverted Indexing Technique," 2022 IEEE 11th

International Conference on Communication Systems and Network Technologies (CSNT),

2022, pp. 351-356, doi: 10.1109/CSNT54456.2022.9787680.

[38] D. Siddharth, D. K. J Saini, P. Singh, An Efficient Approach for Edge Detection

Technique using Kalman Filter with Artificial NeuralNetwork, International Journal of

Engineering, Transactions C: Aspects Vol. 34, No. 12, (2021) 2604-2610

7533

ResMilitaris,vol.13,n°2, ISSN: 2265-6294 Spring (2023)

[39] "A comparative study on energy-efficient clustering based on metaheuristic

algorithms for WSN", International Journal of Advanced Technology and Engineering

Exploration, vol. 9, no. 86, 2022. Available: 10.19101/ijatee.2021.874823.

[40] DilipKumar Jang Bahadur, L. Lakshmanan, A Novel Method for Optimizing Energy

Consumption in Wireless Sensor Network Using Genetic Algorithm, Microprocessors and

Microsystems, 2022,104749,ISSN0141-9331 https://doi.org/10.1016/j.micpro.2022.104749.

[41] Sharma, P. ., R. K. Yadav, and D. J. B.Saini. “A Survey on the State of Art

Approaches for Disease Detection in Plants”. International Journal on Recent and Innovation

Trends in Computing and Communication, vol. 10, no. 11, Nov. 2022, pp. 14-21,

doi:10.17762/ijritcc.v10i11.5774

[42] H. Chanyal, R. K. . Yadav, and D. K. J. Saini, “Classification of Medicinal Plants

Leaves Using Deep Learning Technique: A Review”, International Journal of Intelligent

Systems and Applications in Engineering, vol. 10, no. 4, pp. 78–87, Dec. 2022.

